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Chapter 1

General Introduction

Abstract In this chapter we present some notations and give a
survey of the existing results about three topics of graph theory
that are considered in this thesis, namely: spanning 2-connected
subgraphs of grid graphs, Ramsey numbers for paths versus other
graphs, and a general framework for coloring problems.

1.1 Notation and terminology

Throughout this thesis, we use [3] for terminology and notation not defined
here and consider only finite and simple graphs. Let G be such a graph. We
write V (G) or V for the vertex set of G and E(G) or E for the edge set of
G. The graph H = (V ′, E′) is called a subgraph of G = (V,E) if V ′ ⊆ V and
E′ ⊆ E (implying that the edges of H have all their end vertices in V ′).

If e = {u, v} ∈ E (in short, e = uv), then u is called adjacent to v, and u
and v are called neighbors. For x ∈ V , define N(x) = {y ∈ V |xy ∈ E} and
N [x] = N(x) ∪ {x}. A perfect matching of G is a subset of |V |/2 edges of E
that are pairwise vertex-disjoint.

If S ⊂ V (G), S 6= V (G), then G − S denotes the subgraph of G induced by
V (G)\S. If |S| = 1, then we also use G− z for S = {z} instead of G−{z}. If
e ∈ E(G), then G−e = (V (G), E(G)\{e}). A set V ′ ⊆ V is called independent
if G does not contain edges with both end vertices in V ′.

1



2 Chapter 1

A path is a graph P whose vertices can be ordered into a sequence v1, v2, . . . ,
vn such that EP = {v1v2, . . . , vn−1vn}. A Hamilton path of the graph G is a
path containing all vertices of G. The distance between two vertices u and v of
a connected graph is the length of a shortest path between them. A cycle is a
graph C whose vertices can be ordered into a sequence v1, v2, . . . , vn such that
EC = {v1v2, . . . , vn−1vn, vnv1}. A tree is a connected graph T that does not
contain any cycles. We denote the path, the cycle and the tree on n vertices
by Pn, Cn and Tn, respectively.

A complete graph is a graph with an edge between every pair of vertices. The
complete graph on n vertices is denoted by Kn. The graph G is the complement
of G, i.e., the graph obtained from the complete graph on |V (G)| vertices by
deleting the edges of G.

A graph G is complete p-partite if its vertices can be partitioned into p non-
empty independent sets V1, . . . , Vp such that its edge set E is formed by all
edges that have one end vertex in Vi and the other one in Vj for some 1 ≤
i < j ≤ p. A complete 2-partite graph is called a complete m by n bipartite
graph and denoted by Km,n if |V1| = m and |V2| = n. A star Sn is a complete
2-partite graph with independent sets V1 = {r} and V2 with |V2| = n; the
vertex r is called the root and the vertices in V2 are called the leaves of Sn.
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Figure 1.1: (a) The wheel W9 (b) The kipas K̂7 (c) The fan F5

A wheel Wm is a graph on m + 1 vertices obtained from a cycle on m vertices
by adding a new vertex and edges joining it to all the vertices of the cycle (Wm

is the join of K1 and Cm). A kipas K̂m is a graph on m + 1 vertices obtained
from the join of K1 and Pm. A fan Fm is a graph on 2m + 1 vertices obtained
from m disjoint triangles (K3s) by identifying precisely one vertex of every
triangle (Fm is the join of K1 and mK2). It is also known in the literature as
‘dutch windmill’. For illustration, consider W9 in Figure 1.1(a), K̂7 in Figure
1.1(b), and F5 in Figure 1.1(c). The vertex corresponding to K1 in a wheel or
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in a kipas or in a fan is called the hub of the wheel or the hub of the kipas or
the hub of the fan, respectively.

A split graph is a graph whose vertex set can be partitioned into a clique (i.e. a
set of mutually adjacent vertices) and an independent set (i.e. a set of mutually
nonadjacent vertices), with possibly edges in between. The size of a largest
clique in G and the size of a largest independent set in G are denoted by ω(G)
and α(G), respectively.

Let G = (V,E) be a graph. A vertex coloring f : V → {1, 2, 3, . . .} of V is
proper, if |f(u)−f(v)| ≥ 1 holds for all edges uv ∈ E. A proper vertex coloring
f : V → {1, . . . , k} is called a k-coloring, and the chromatic number χ(G) is
the smallest integer k for which there exists a k-coloring. By definition, a
k-coloring partitions V into k independent sets V1, . . . , Vk.

1.2 Spanning 2-connected subgraphs of grid graphs

A subgraph H of a graph G = (V,E) is called a spanning subgraph if V (H) = V .
A connected graph is called 2-connected if it remains connected if at most one
vertex is removed. A Hamilton cycle in a graph G = (V,E) is a cycle contain-
ing every vertex of V , i.e. a spanning 2-connected subgraph in which every
vertex has degree 2 (the number of edges is |V |).

It is probable that no efficient algorithm exists for finding Hamilton cycles,
but that does not prevent the problem from arising in real applications. There
are a number of ways to cope with this dilemma. One might be satisfied with
an approximation - for example, a cycle that covers most but not all of the
vertices of the graph. Or, the particular instance of the problem might be a
special case that is solvable efficiently - for example, complete graphs always
have a Hamilton cycle, and it is very easy to find. Finally, if an exact solution
is required, the inefficient enumerative algorithm (or variant thereof) might
be tried with the hope that its actual performance on this particular instance
of the problem does not approach the worst case. The search for restricted
cases is then of obvious relevance to the second option, and quite possibly a
useful starting point for certain approximations if the first option is pursued.

The infinite grid graph G∞ is defined by the set of vertices V = {(x, y) |
x ∈ Z, y ∈ Z } and the set of edges E between all pairs of vertices from
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V at Euclidean distance precisely 1. For any integers s ≥ 1 and t ≥ 1,
the rectangular grid graph R(s, t) is the (finite) subgraph of G∞ induced by
V (s, t) = {(x, y) | 1 ≤ x ≤ s, 1 ≤ y ≤ t, x ∈ Z, y ∈ Z} (and just containing all
edges from G∞ between pairs of vertices from V (s, t)). This graph R(s, t) is
also known as the product graph Ps × Pt of two disjoint paths Ps and Pt. A
grid graph is a graph that is isomorphic to a subgraph of R(s, t) induced by a
subset of V (s, t) for some integers s ≥ 1 and t ≥ 1.

Grid graphs have three important properties that in many cases permit effi-
cient algorithms for a variety of graph problems. The first is that grid graphs
are planar graph, i.e. they can be drawn in the plane <2 in such a way that
the edges only intersect at the vertices of the graph. In such a drawing for the
grid graph G = (V,E), the regions of <2\(V ∪ E) are called the faces of G.
Exactly one of the faces is unbounded; this is called the outer face; the others
are its inner faces. The natural drawing of a grid graph is just described by
drawing its vertices in <2 according to their coordinates. A solid grid graph
is a grid graph all of whose inner faces have area one (are bounded by a cycle
on four vertices) in a natural drawing. A grid graph that is not solid contains
inner faces (in a natural drawing) that have area larger than one; these faces
are called holes. The second property of grid graphs is that they are bipartite,
which means that the vertices of the graph can be partitioned into two sets so
that all edges have one end vertex in each set. Finally, the maximum degree
of all vertices is four. Unfortunately, for the Hamilton cycle problem, these
features are not likely to simplify the problem enough to permit an efficient
algorithm.

Itai, Papadimitriou and Szwarcfiter [29] proved that deciding whether a given
grid graph has a Hamilton cycle is an NP-complete problem. This implies
that the problem of finding a spanning 2-connected subgraph with as few
edges as possible is also NP-hard for grid graphs. It has been conjectured
that the first problem remains NP-complete when it is restricted to solid grid
graphs. However, Umans and Lenhart [50] recently proved that this problem
is polynomially solvable, by presenting a complicated algorithm with time
complexity O(|V |4). In a recent paper of Sheffield [48] the work of [29] has
been extended to grid graphs with a small number of holes. For the second
problem the complexity is not known when it is restricted to solid grid graphs.
It remains an open problem –what the complexity of both problems is –when
we restrict ourselves to grid graphs with a fixed number of holes.

Motivated by the above problems, we studied the problem of the existence
of a Hamilton cycle and the problem of determining a spanning 2-connected
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subgraph with as few edges as possible for some classes of finite grid graphs
with no or a few holes. We define four classes of grid graphs called truncated
rectangular grid graphs and 26 classes of grid graphs called alphabet graphs.
The definition of the classes can be found in Chapter 2. We present our results
from [38], [39], [40], [41] and [42] in the following theorems.

Theorem 1.2.1. Let R(s, t)−1(k,l), R(s, t)−2(k,l), R(s, t)−3(k,l) and
R(s, t)−4(k,l) denote the 1-corner truncated rectangular grid graph, the 2-corner
truncated rectangular grid graph, the 3-corner truncated rectangular grid graph
and the 4-corner truncated rectangular grid graph, respectively. Then:

(a) R(s, t)−1(k,l) contains a spanning 2-connected subgraph with (at most)
|V |+1 edges and is hamiltonian if and only if both s · t and k · l are even
or both s · t and k · l are odd.

(b) R(s, t)−2(k,l) contains a spanning 2-connected subgraph with
• |V | edges if s · t is even and at least one of k and l is even if both s
and t are even;
• |V | + 2 edges if s and t are even and k and l are odd;
• |V | + 1 edges in all other cases.
These numbers of edges are all best possible.

(c) R(s, t)−3(k,l) contains a spanning 2-connected subgraph with
• |V | edges if both s · t and k · l are even;
• |V | + 2 edges if all of s, t, k and l are odd;
• |V | + 1 edges in all other cases.
These numbers of edges are all best possible.

(d) R(s, t)−4(k,l) contains a spanning 2-connected subgraph with (at most)
|V | + 3 edges and is hamiltonian if and only if s · t is even. The bound
|V | + 3 is best possible for any odd numbers s, t, k and l.

Theorem 1.2.2. Let m ≥ 3 and n ≥ 3. Let A,B, . . . , Z denote the alphabet
graphs Am,n, Bm,n, . . . , Zm,n. Then:

(a) A,D,O and P are hamiltonian.

(b) E and F contain a spanning 2-connected subgraph with (at most) |V |+1
edges and are hamiltonian if and only if n is even.

(c) N contains a spanning 2-connected subgraph with (at most) |V |+1 edges
and is hamiltonian if and only if m and n have a different parity.
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(d) Q contains a spanning 2-connected subgraph with (at most) |V |+1 edges
and is hamiltonian if and only if m is odd or n is even.

(e) R contains a spanning 2-connected subgraph with (at most) |V |+1 edges
and is hamiltonian if and only if m is even or n is odd.

(f) W contains a spanning 2-connected subgraph with
• |V | edges if m is even;
• |V | + 1 edges if both m and n are odd;
• |V | + 2 edges if m is odd and n is even.
These numbers of edges are all best possible.

(g) X contains a spanning 2-connected subgraph with
• |V | edges if either (m is even) or (m is odd, m ≥ 7 and n is even);
• |V | + 1 edges if either (m and n are odd) or (m=5 and n is even);
• |V | + 2 edges if m=3 and n is even.

(h) The remaining alphabet graphs contain a spanning 2-connected subgraph
with (at most) |V | + 1 edges and are hamiltonian if and only if m · n is
even.

1.3 Ramsey numbers for paths versus other graphs

Generalized Ramsey numbers have received a great deal of attention over the
last several years [35]. In this section we consider the Ramsey numbers for
paths versus other graphs.

For two given graphs F and H, the Ramsey number R(F,H) is the smallest
positive integer p such that for every graph G on p vertices the following holds:
either G contains F as a subgraph or the complement of G contains H as a
subgraph.

The definition of the Ramsey number R(F,H) evidently first appeared in a
paper of Geréncser and Gyárfás which dealt with the case where F and H are
both paths. Their result is rewritten in Theorem 1.3.1.

Theorem 1.3.1. (Geréncser & Gyárfás [20])

R(Pn, Pm) = m +
⌊n

2

⌋

− 1 for 2 ≤ n ≤ m.
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After that, the Ramsey numbers R(Pn, G) for paths versus other graphs G
have been investigated in several papers.

In 1973 Parsons found the Ramsey numbers for paths versus complete graphs
which are formulated in Theorem 1.3.2.

Theorem 1.3.2. (Parsons [33])

R(Pn,Km) = (m − 1)(n − 1) + 1.

Faudree, Lawrence, Parsons and Schelp determined the Ramsey numbers for
paths versus cycles in 1974.

Theorem 1.3.3. (Faudree, Lawrence, Parsons & Schelp [13])

R(Pn, Cm) =















2n − 1 for 3 ≤ odd m ≤ n
n + m

2 − 1 for 4 ≤ even m ≤ n
max

{

m +
⌊

n
2

⌋

− 1, 2n − 1
}

for 2 ≤ n ≤ odd m
m +

⌊

n
2

⌋

− 1 for 2 ≤ n ≤ even m.

The Ramsey numbers R(Pn, Sm) for paths versus stars for all m and n were
given by Parsons in 1974. He presented the numbers by explicit formulas as in
Theorem 1.3.4 and Theorem 1.3.5, and by a recurrence as in Theorem 1.3.6.

Theorem 1.3.4. (Parsons [34])

R(Pn, Sm) =















1 for n = 1
m + n − 1 for n ≥ 2, m = 1 mod(n − 1)
2m − 1 for n ≥ 3, m + 1 ≤ n ≤ 2m − 1
n for m ≥ 2, n ≥ 2m.

Theorem 1.3.5. (Parsons [34])
If (n ≥ 3, m > n, m ≥ (n − 3)2 and m 6= 1 mod(n − 1)) or (n ≥ 6,
n < m < (n − 3)2 and m = 2 mod(n − 1)) or (n ≥ 7, n < m < (n − 3)2 and
m = 0 mod(n− 1)) or (n ≥ 7, n < m < (n− 3)2 and m = −1 mod(n− 1)) or
(n ≥ 7, n < m < (n − 3)2, m 6= 1 mod(n − 1) and m = 1 mod(n − 2)), then

R(Pn, Sm) = m + n − 2.
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Theorem 1.3.6. (Parsons [34])

R(Pn, Sm) = max {R(Pn−1, Sm), R(Pn, Sm−n+1) + n − 1} for 3 ≤ n ≤ m.

In 1978 Rousseau and Sheehan gave the Ramsey numbers R(Pn,Kl + Km),
where Kl + Km denotes the joint of the complete graph on l vertices and the
empty graph on m vertices.

Theorem 1.3.7. (Rousseau & Sheehan [36])
If l ≥ 1, m ≥ 1 and n ≥ 2, then

R(Pn,Kl + Km) =

1 + max

{(⌊

m − 1

n − 1

⌋

+ l

)

(n − 1), m − 1 +

⌊

m − 1

b(m − 1)/(n − 1)c + 1

⌋

l

}

.

Burr, Erdös, Faudree, Rousseau and Schelp determined the Ramsey numbers
for paths versus sparse graphs in 1982 as the next theorem.

Theorem 1.3.8. (Burr, Erdös, Faudree, Rousseau & Schelp [9])
Let G be a connected graph with k vertices and no more than

⌈

k(1 + 1/81n5)
⌉

edges. If ∆(G) ≤ k(1 − 1/81n5), k ≥ 352n12 and n ≥ 2, then

R(Pn, G) = k + dn/2e − 1.

In 1989 Häggkvist gave upper bounds for the path-complete bipartite Ramsey
numbers as Theorem 1.3.9 and the exact values for a special case as in Theorem
1.3.10.

Theorem 1.3.9. (Häggkvist [24])

R(Pn,Kq,m) ≤ q + m + n − 2.

Theorem 1.3.10. (Häggkvist [24])

R(Pn,Kq,m) = q + m + n − 2 for q = 1 mod(n − 1) and m = 1 mod(n − 1).

Some upper bounds for the path-tree Ramsey numbers were given by Faudree,
Schelp and Simonovits in 1990 as follows.
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Theorem 1.3.11. (Faudree, Schelp & Simonovits [14])

R(Pn, Tm) ≤

{

m + n − 2 for n ≥ m or m ≥ 432n6 − n2

m + 6n2 − 2n for other values of m and n.

Now we consider the path-wheel Ramsey numbers. In 2001 Surahmat and
Baskoro studied the Ramsey numbers for paths versus W4 or W5. Their result
is rewritten in Theorem 1.3.12.

Theorem 1.3.12. (Surahmat & Baskoro [49])
Let n ≥ 3. Then

R(Pn,Wm) =

{

2n − 1 for m = 4
3n − 2 for m = 5.

In 2002 Chen, Zhang and Zhang obtained the path-wheel Ramsey numbers
for the values of m and n that are presented in Theorem 1.3.13.

Theorem 1.3.13. (Chen, Zhang and Zhang [12])
Let n ≥ m − 1. Then

R(Pn,Wm) =

{

2n − 1 for even m ≥ 6
3n − 2 for odd m ≥ 7.

In [44] we presented results which generalized the results in [49] and [12]. Those
results are formulated in the following two theorems. The Ramsey numbers
for ‘small’ paths versus wheels or paths versus ‘small’ wheels are presented in
Theorem 1.3.14, and the Ramsey numbers for odd paths versus ‘large’ wheels
are presented in Theorem 1.3.15. Moreover, we give lower bounds and upper
bounds for R(Pn,Wm) for other values of n and m as in Theorem 1.3.16 and
Theorem 1.3.17.

Theorem 1.3.14.

R(Pn,Wm) =







































1 for n = 1 and m ≥ 3
m + 1 for either n = 2 and m ≥ 3

or n = 3 and even m ≥ 4
m + 2 for n = 3 and odd m ≥ 5
3n − 2 for either n = 3 and m = 3

or n ≥ 4 and 3 ≤ odd m ≤ 2n − 1
2n − 1 for n ≥ 4 and 4 ≤ even m ≤ n + 1.
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Theorem 1.3.15. If (n = 5 and m = 8 or m ≥ 10) or (odd n ≥ 7 and
m = 2n − 2 or m = 2n or m ≥ (n − 3)2) or (odd n ≥ 9 and q · n − 2q + 1 ≤
m ≤ q · n − q + 2 with 3 ≤ q ≤ n − 5), then

R(Pn,Wm) =

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

Theorem 1.3.16. If n is odd, n ≥ 7 and q ·n− q +3 ≤ m ≤ q ·n− 2q +n− 2
with 2 ≤ q ≤ n − 5, then

m + n − 2 ≥ R(Pn,Wm) ≥

max

{⌊

m

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

dm/(n − 1)e

⌋}

.

Theorem 1.3.17. If (n ≥ 6 and m is even, n+2 ≤ m ≤ 2n−4) or (n is even,
n ≥ 4 and m = 2n − 2 or m ≥ 2n), then

m + b3n/2c − 2 ≥ R(Pn,Wm) ≥

max

{⌊

m − 1

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

d(m − 1)/(n − 1)e

⌋}

.

Next, we consider the path-kipas Ramsey numbers. In [45] we determined the
Ramsey numbers R(Pn, K̂m) for some values of n and m as in the following
three theorems. Besides that, in Theorem 1.3.20, Theorem 1.3.21 and Theorem
1.3.22 we give lower bounds and upper bounds for R(Pn, K̂m) for other values
of m and n.

Theorem 1.3.18.

R(Pn, K̂m) =







































1 for n = 1 and m ≥ 3
m + 1 for either n = 2 and m ≥ 3

or n = 3 and even m ≥ 4
m + 2 for n = 3 and odd m ≥ 5
3n − 2 for either n = 3 and m = 3

or n ≥ 4 and 3 ≤ odd m ≤ 2n − 1
2n − 1 for n ≥ 4 and 4 ≤ even m ≤ n + 1.
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Theorem 1.3.19. If (4 ≤ n ≤ 6 and m = 2n − 2 or m ≥ 2n) or (n ≥ 7 and
m = 2n − 2 or m = 2n or m ≥ (n − 3)2) or (n ≥ 8 and q · n − 2q + 1 ≤ m ≤
q · n − q + 2 with 3 ≤ q ≤ n − 5), then

R(Pn, K̂m) =

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

Theorem 1.3.20. If n is odd, n ≥ 11 and q ·n− q+3 ≤ m ≤ q ·n−3q+n−3
with 2 ≤ q ≤ (n − 7)/2, then

m + n − 3 ≥ R(Pn, K̂m) ≥

max

{⌊

m

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

dm/(n − 1)e

⌋}

.

Theorem 1.3.21. If n is even, n ≥ 8 and q ·n− q +3 ≤ m ≤ q ·n−2q +n−2
with 2 ≤ q ≤ n − 5, then

m + n − 2 ≥ R(Pn, K̂m) ≥

max

{⌊

m

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

dm/(n − 1)e

⌋}

.

Theorem 1.3.22. If n ≥ 6 and m is even with n + 2 ≤ m ≤ 2n − 4, then

m +

⌊

3n

2

⌋

− 2 ≥ R(Pn, K̂m) ≥

{

2n − 1 for n + 2 ≤ m ≤ n + bn/3c
3m
2 − 1 for n + bn/3c < m ≤ 2n − 4.

In the last part of this section we present our results about the path-fan
Ramsey numbers [43]. The Ramsey numbers for ‘small’ paths versus fans or
paths versus ‘small’ fans are presented in Theorem 1.3.23. In Theorem 1.3.24
and Theorem 1.3.25 we present the Ramsey numbers for paths versus ‘large’
fans. Moreover, we also give lower bounds and upper bounds for R(Pn, Fm)
for other values of m and n.

Theorem 1.3.23.

R(Pn, Fm) =







1 for n = 1 and m ≥ 2
2m + 1 for n = 2 or n = 3 and m ≥ 2
2n − 1 for n ≥ 4 and 2 ≤ m ≤ (n + 1)/2.
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Theorem 1.3.24. If (4 ≤ n ≤ 6 and m ≥ n− 1) or (n ≥ 7 and m = n− 1 or
m = n or m ≥ (n−3)2/2) or (n ≥ 8 and (q ·n−2q+1)/2 ≤ m ≤ (q ·n−q+2)/2
with 3 ≤ q ≤ n − 5), then

R(Pn, Fm) =

{

2m + n − 1 for 2m = 1 mod(n − 1)
2m + n − 2 for other values of m.

Theorem 1.3.25. If n is odd, n ≥ 9 and either ((q · n − 3q + 1)/2 ≤ m ≤
(q ·n−2q)/2 with 3 ≤ q ≤ (n−3)/2) or ((q ·n−q−n+4)/2 ≤ m ≤ (q ·n−2q)/2
with (n − 1)/2 ≤ q ≤ n − 5), then R(Pn, Fm) = 2m + n − 3.

Theorem 1.3.26. If n is odd, n ≥ 11 and (q · n − q + 4)/2 ≤ m ≤ (q · n −
3q + n − 3)/2 with 2 ≤ q ≤ (n − 7)/2, then

2m + n − 3 ≥ R(Pn, Fm) ≥

max

{⌊

2m

n − 1

⌋

(n − 1) + n, 2m +

⌊

2m − 1

d2m/(n − 1)e

⌋}

.

Theorem 1.3.27. If n is even, n ≥ 8 and (q · n − q + 3)/2 ≤ m ≤ (q · n −
2q + n − 2)/2 with 2 ≤ q ≤ n − 5, then

2m + n − 2 ≥ R(Pn, Fm) ≥

max

{⌊

2m

n − 1

⌋

(n − 1) + n, 2m +

⌊

2m − 1

d2m/(n − 1)e

⌋}

.

Theorem 1.3.28. If n ≥ 6 and (n + 2)/2 ≤ m ≤ n − 2, then

2m +

⌊

3n

2

⌋

− 2 ≥ R(Pn, Fm) ≥

{

2n − 1 for n+2
2 ≤ m ≤ n+bn/3c

2

3m − 1 for n+bn/3c
2 < m ≤ n − 2.

1.4 A general framework for coloring problems

In the application area of frequency assignment graphs are used to model the
topology and mutual interference between transmitters: the vertices of the
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graph represent the transmitters; two vertices are adjacent in the graph if the
corresponding transmitters are so close (or so strong) that they are likely to
interfere if they broadcast on the same or ‘similar’ frequency channels. The
problem in practice is to assign a limited number of frequency channels in an
economical way to the transmitters in such a way that interference is kept at an
‘acceptable level’. This has led to various different types of coloring problems
in graphs, depending on different ways to model the level of interference, the
notion of similar frequency channels, and the definition of acceptable level of
interference (See e.g. [25], [31]).

In [7] an attempt was made to capture a number of different coloring problems
in a unifying model. This general framework is as follows:

Given two graphs G1 and G2 with the property that G1 is a (span-
ning) subgraph of G2, one considers the following type of coloring
problems: Determine a coloring of (G1 and) G2 that satisfies cer-
tain restrictions of type 1 in G1, and restrictions of type 2 in G2,
using a limited number of colors.

Many known coloring problems related to frequency assignment fit into this
general framework [6]. We mention some of them here explicitly.

First of all suppose that G2 = G2
1, i.e. G2 is obtained from G1 by adding edges

between all pairs of vertices that are at distance 2 in G1. If one just asks for a
proper vertex coloring of G2 (and G1), this is known as the distance-2 coloring
problem. So, a distant-2 coloring of a graph G is a coloring of the vertices of
G such that vertices at distance one or two have different colors. The least
number for which a distant-2 coloring exists is called the distant-2 chromatic
number of G, denoted by χ2(G). Much of the research has been concentrated
on the case that G1 is a planar graph and on the problem to find the relation
between distant-2 chromatic number and maximum degree of the graph (see
e.g. [1], [4], [5], [28], and [51]). In 2001 Molloy and Salavativour proved the
following thoerem.

Theorem 1.4.1. (Molloy and Salavativour [32])
If G is a planar graph with maximum degree ∆, then

χ2 ≤

{ ⌊

5
3∆

⌋

+ 78
⌊

5
3∆

⌋

+ 24, if ∆ ≥ 241.
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In some versions of this problem one puts the additional restriction on G1

that the colors should be sufficiently separated, in order to model practical
frequency assignment problems in which interference should be kept at an
acceptable level. One way to model this is to use positive integers for the colors
(modeling certain frequency channels) and to ask for a coloring of G1 and G2

such that the colors on adjacent vertices in G2 are different, whereas they
differ by at least 2 on adjacent vertices in G1. This problem is known as the
radio coloring problem. So, a radio coloring of graph G = (V,E) is a function
f : V → N+ such that |f(u) − f(v)| ≥ 2 if uv ∈ E and |f(u) − f(v)| ≥ 1
if the distance between u and v in G is 2. The notion of radio coloring was
introduced by Griggs and Yeh [22] under the name L(2, 1)-labeling. The span
of radio coloring f of G is maxv∈V f(v). The problem of determining a radio
coloring with minimum span and the problem of determining the complexity
of a radio coloring for some classes of graphs have received a lot of attention
(see e.g. [2], [10], [15], [16], [17], [18], and [30].

The so-called radio labeling problem models a practical setting in which all
assigned frequency channels should be distinct, with the additional restric-
tion that adjacent transmitters should use sufficiently separated frequency
channels. So, a radio labeling of graph G = (V,E) is an injective function
f : V → N+ such that |f(u) − f(v)| ≥ 2 if uv ∈ E. Within the above
framework this can be modeled by considering the graph G1 that models the
adjacencies of n transmitters, and taking G2 = Kn, the complete graph on n
vertices. The restrictions are clear: one asks for a proper vertex coloring of
G2 such that adjacent vertices in G1 receive colors that differ by at least 2.
We refer to [22] and [27] for more particulars.

In the last part of this section we model the situation that the transmitters
form a network in which a certain substructure of adjacent transmitters (called
the backbone) is more crucial for the communication than the rest of the
network. This means we should put more restrictions on the assignment of
frequency channels along the backbone than on the assignment of frequency
channels to other adjacent transmitters. The backbone could e.g. model so-
called hot spots in the network where a very busy pattern of communications
takes place, whereas the other adjacent transmitters supply a more moderate
service. We consider the problem of coloring the graph G2 (that models the
whole network) with a proper vertex coloring such that the colors on adjacent
vertices in G1 (that model the backbone) differ by at least λ ≥ 2. So, for a
spanning subgraph H = (V,EH) of G = (V,E), a proper vertex coloring f of V
is a λ-backbone coloring of (G,H), if |f(u)−f(v)| ≥ λ holds for all edges uv ∈
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EH . The λ-backbone coloring number bbcλ(G,H) of (G,H) is the smallest
integer ` for which there exists a λ-backbone coloring f : V → {1, . . . , `}.
Note that the notion of λ-backbone coloring was introduced in [7]. It in fact
generalizes both radio coloring and radio labeling: radio coloring is the special
case of 2-backbone coloring in which G1 is the backbone of G2 = G2

1, while
radio labeling is the special case in which G1 is the backbone of Kn.

We call a spanning subgraph H of a graph G

• a tree backbone of G if H is a (spanning) tree;

• a path backbone of G if H is a (Hamilton) path;

• a star backbone of G if H is a collection of pairwise disjoint stars;

• a matching backbone of G if H is a perfect matching.

Obviously, bbcλ(G,H) ≥ χ(G) holds for any backbone H of a graph G. In
order to analyze the maximum difference between these two numbers the fol-
lowing values can be introduced.

Tλ(k) = max {bbcλ(G,T ) | T is a tree backbone of G, and χ(G) = k} ;
Pλ(k) = max {bbcλ(G,P ) | P is a path backbone of G, and χ(G) = k} ;
Sλ(k) = max {bbcλ(G,S) | S is a star backbone of G, and χ(G) = k} ;
Mλ(k) = max {bbcλ(G,M) | M is a matching backbone of G, and χ(G) = k} .

In 2003 Broersma, Fomin, Golovach and Woeginger [7] considered cases where
the backbone is a spanning tree or a Hamilton path. In 2004 we considered
cases where the backbone is a collection of pairwise disjoint stars or a per-
fect matching [46]. In [7] and [46] combinatorial and algorithmic aspects are
treated. In [8] we considered the backbone coloring numbers of split graphs
with star, matching or tree backbones. We consider algorithmic aspects for
tree or path backbones in [47].

We summarize the main results from [7] in Theorem 1.4.2, Theorem 1.4.3,
Theorem 1.4.4 and Theorem 1.4.5. Theorem 1.4.2 and Theorem 1.4.3 show the
relation between the 2-backbone coloring number and the chromatic number
in case the backbone is a tree or a path. The 2-backbone coloring number
roughly grow like 2k and 3k/2, respectively, where χ = k. Theorem 1.4.4 is a
strengthening of Theorem 1.4.2 and Theorem 1.4.3 for the special case of split
graphs. Theorem 1.4.5 gives the computational complexity of the 2-backbone
coloring number for tree and path backbones.
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Theorem 1.4.2. (Broersma, Fomin, Golovach & Woeginger [7])

T2(k) = 2k − 1 for k ≥ 1.

Theorem 1.4.3. (Broersma, Fomin, Golovach & Woeginger [7])
For k ≥ 1 the function P2(k) takes the following values:

(a) for 1 ≤ k ≤ 4: P2(k) = 2k − 1;

(b) P2(5) = 8 and P2(6) = 10;

(c) for k ≥ 7 and k = 4t: P2(4t) = 6t;

(d) for k ≥ 7 and k = 4t + 1: P2(4t + 1) = 6t + 1;

(e) for k ≥ 7 and k = 4t + 2: P2(4t + 2) = 6t + 3;

(f) for k ≥ 7 and k = 4t + 3: P2(4t + 3) = 6t + 5.

Theorem 1.4.4. (Broersma, Fomin, Golovach & Woeginger [7])
Let G = (V,E) be a split graph with χ(G) = k ≥ 2.

(a) For every spanning tree T = (V,ET ) of G,

bbc2(G,T ) ≤

{

3 if k = 2
k + 2 if k ≥ 3.

(b) For every Hamilton path P = (V,EP ) of G,

bbc2(G,P ) ≤

{

k + 1 if k 6= 3
5 if k = 3.

The bounds are tight.

Theorem 1.4.5. (Broersma, Fomin, Golovach & Woeginger [7])

(a) The following problem is polynomially solvable for any ` ≤ 4: Given a
graph G and a tree backbone T , decide whether bbc2(G,T ) ≤ `.

(b) The following problem is NP-complete for all ` ≥ 5: Given a graph G
and a path backbone P , decide whether bbc2(G,P ) ≤ `.
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Next, we present our results in [46] about the λ-backbone coloring numbers of
graphs with star backbones or matching backbones.

Theorem 1.4.6. For λ ≥ 2 and k ≥ 2 the function Sλ(k) takes the following
values:

(a) Sλ(2) = λ + 1;

(b) for 3 ≤ k ≤ 2λ − 3: Sλ(k) = d3k
2 e + λ − 2;

(c) for 2λ − 2 ≤ k ≤ 2λ − 1 with λ ≥ 3: Sλ(k) = k + 2λ − 2; S2(3) = 5;

(d) for k = 2λ with λ ≥ 3: Sλ(k) = 2k − 1; S2(4) = 6;

(e) for k ≥ 2λ + 1: Sλ(k) = 2k − bk
λc.

Theorem 1.4.7. For λ ≥ 2 and k ≥ 2 the function Mλ(k) takes the following
values:

(a) for 2 ≤ k ≤ λ: Mλ(k) = λ + k − 1;

(b) for λ + 1 ≤ k ≤ 2λ: Mλ(k) = 2k − 2;

(c) for k = 2λ + 1: Mλ(k) = 2k − 3;

(d) for k = t(λ + 1) with t ≥ 2: Mλ(k) = 2λ · t;

(e) for k = t(λ + 1) + c with t ≥ 2, 1 ≤ c < λ+3
2 : Mλ(k) = 2λ · t + 2c − 1;

(f) for k = t(λ + 1) + c with t ≥ 2, λ+3
2 ≤ c ≤ λ: Mλ(k) = 2λ · t + 2c − 2.

In [46] we also considered planar graphs. The Four-Color Theorem together
with Theorem 1.4.7 implies that bbc2(G,M) ≤ 6 holds for any planar graph
G with a perfect matching M . It seems likely that this bound 6 is not best
possible, but there are planar graphs showing that we can not improve this
bound to 4.

In the last part of [46] we introduced a special kind of 2-backbone coloring
and proved Theorem 1.4.8. Let H = (V,EH) be a backbone of the graph
G = (V,EG). A 2-backbone coloring f : V → {1, . . . , `} of (G,H) is called an
`-cyclic 2-backbone coloring of (G,H), if there does not exist an edge in EH

that connects two vertices with color 1 and color ` in V .
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Theorem 1.4.8.

(a) Let G be a planar graph with a matching backbone M . Then (G,M) has
a 6-cyclic 2-backbone coloring.

(b) There exist planar graphs that do not have a 5-cyclic 2-backbone coloring
where the backbone is a perfect matching.

The three following theorems are our results about the λ-backbone coloring
numbers of split graphs with star or matching or tree backbones [8]. Theorem
1.4.11 is a generalization of Theorem 1.4.4(a).

Theorem 1.4.9. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) =
k ≥ 2. For every star backbone S = (V,ES) of G,

bbcλ(G,S) ≤

{

k + λ if either k = 3 and λ ≥ 2 or k ≥ 4 and λ = 2
k + λ − 1 in the other cases.

The bounds are tight.

Theorem 1.4.10. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) =
k ≥ 2. For every matching backbone M = (V,EM ) of G,

bbcλ(G,M) ≤























λ + 1 if k = 2

k + 1 if k ≥ 3 and λ ≤ min{k
2 , k+5

3 }
k + 2 if k = 9 or k ≥ 11 and k+6

3 ≤ λ ≤ dk
2e

dk
2e + λ if k = 3, 5, 7 and λ ≥ dk

2e
dk

2e + λ + 1 if k = 4, 6 or k ≥ 8 and λ ≥ dk
2e + 1.

The bounds are tight.

Theorem 1.4.11. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) =
k. For every tree backbone T = (V,ET ) of G,

bbcλ(G,T ) ≤







1 if k = 1
1 + λ if k = 2
k + λ if k ≥ 3.

The bounds are tight.
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The two following theorems are our results in [46] or [47] about the compu-
tational complexity of computing the λ-backbone coloring number of a graph
with a star backbone or a matching backbone or a tree backbone or a path
backbone. Theorem 1.4.13 is a generalization of Theorem 1.4.5.

Theorem 1.4.12. Let λ ≥ 2.

(a) The following problem is polynomially solvable for any ` ≤ λ + 1: Given
a graph G and a star backbone S, decide whether bbcλ(G,S) ≤ `.

(b) The following problem is NP-complete for all ` ≥ λ + 2: Given a graph
G and a matching backbone M , decide whether bbcλ(G,M) ≤ `.

Theorem 1.4.13. Let λ ≥ 2.

(a) The following problem is polynomially solvable for any ` ≤ λ + 2: Given
a graph G and a spanning tree T , decide whether bbcλ(G,T ) ≤ `.

(b) The following problem is NP-complete for all ` ≥ λ + 3: Given a graph
G and a Hamiltonian path P , decide whether bbcλ(G,P ) ≤ `.





Chapter 2

Spanning 2-Connected

Subgraphs of Some Classes of

Grid Graphs

Abstract In this chapter we define four classes of grid graphs
called truncated rectangular grid graphs and 26 classes of grid
graphs called alphabet graphs. We determine which of the graphs
of the defined classes contain a Hamilton cycle and solve the prob-
lem of determining a spanning 2-connected subgraph with as few
edges as possible for these graphs.

2.1 Introduction

We recall that the infinite grid graph G∞ is defined by the set of vertices
V = {(x, y) | x ∈ Z, y ∈ Z } and the set of edges E between all pairs of ver-
tices from V at Euclidean distance precisely 1. For any integers s ≥ 1 and
t ≥ 1, the rectangular grid graph R(s, t) is the (finite) subgraph of G∞ induced
by V (s, t) = {(x, y) | 1 ≤ x ≤ s, 1 ≤ y ≤ t, x ∈ Z, y ∈ Z} (and just containing
all edges from G∞ between pairs of vertices from V (s, t)). A grid graph is a
graph that is isomorphic to a subgraph of R(s, t) induced by a subset of V (s, t)
for some integers s ≥ 1 and t ≥ 1.

21
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We study the problem of the existence of a Hamilton cycle and the problem of
determining a spanning 2-connected subgraph with as few edges as possible for
some classes of finite grid graphs with no or a few holes. We define four classes
of grid graphs called truncated rectangular grid graphs and 26 classes of grid
graphs called alphabet graphs. We give the solution of the second problem for
truncated rectangular grid graphs in Section 2.2 and for alphabet graphs in
Section 2.3. All solutions are of the same type : first, we use the well-known
Grinberg-condition and the properties of bipartite graphs to derive a lower
bound for the number of edges in a spanning 2-connected subgraph. Secondly,
we show by construction that this lower bound is in fact the optimum value.

2.2 Spanning 2-connected subgraphs of truncated

rectangular grid graphs

We introduce the classes of grid graphs which we call truncated rectangular
grid graphs.

For s ≥ 3, t ≥ 3, 0 ≤ k ≤ min{s − 2, t − 2} and 0 ≤ l ≤ min{s − 2, t − 2}
we define a 1-corner truncated rectangular grid graph R(s, t)−1(k,l) as the
subgraph obtained from R(s, t) by deleting k × l vertices from one corner in
V (s, t) together with their incident edges in a natural drawing. For illustration,
consider R(13, 11)−1(3,2) in Figure 2.1(a).

For s ≥ 6, t ≥ 6, 1 ≤ k ≤ min{s−4
2 , t−4

2 } and 1 ≤ l ≤ min{s−4
2 , t−4

2 }

we define a 2-corner truncated rectangular grid graph R(s, t)−2(k,l) as the
subgraph obtained from R(s, t) by deleting k × l vertices from two opposite
corners in V (s, t) together with their incident edges in a natural drawing. For
illustration, consider R(13, 11)−2(3,2) in Figure 2.1(b).

For s ≥ 6, t ≥ 6, 1 ≤ k ≤ min{s−4
2 , t−4

2 } and 1 ≤ l ≤ min{s−4
2 , t−4

2 }

we define a 3-corner truncated rectangular grid graph R(s, t)−3(k,l) as the
subgraph obtained from R(s, t) by deleting k× l vertices from three corners in
V (s, t) together with their incident edges in a natural drawing. For illustration,
consider R(13, 11)−3(3,2) in Figure 2.1(c).

For s ≥ 6, t ≥ 6, 1 ≤ k ≤ min{s−4
2 , t−4

2 } and 1 ≤ l ≤ min{s−4
2 , t−4

2 }

we define a 4-corner truncated rectangular grid graph R(s, t)−4(k,l) as the
subgraph obtained from R(s, t) by deleting k × l vertices from each corner in
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V (s, t) together with their incident edges in a natural drawing. For illustration,
consider R(13, 11)−4(3,2) in Figure 2.1(d).

(d)(c)(b)(a)

Figure 2.1: Truncated rectangular grid graphs (a) R(13, 11)−1(3,2)

(b) R(13, 11)−2(3,2) (c) R(13, 11)−3(3,2) (d) R(13, 11)−4(3,2)

Spanning 2-connected subgraphs with a minimum number of edges for the
1-corner truncated rectangular grid graph R(s, t)−1(k,k) and for the 4-corner
truncated rectangular grid graph R(s, t)−4(k,k) were studied in [38]. Subse-
quently, in [40] these results were generalized to R(s, t)−1(k,l) and R(s, t)−4(k,l).
In [42] we considered the other truncated rectangular grid graphs. We sum-
marize the results in [40] and [42] in the Theorem 2.2.1. It characterizes which
of the truncated rectangular grid graphs are hamiltonian and guarantees the
existence of a spanning 2-connected subgraph with at most three edges more
than their number of vertices.

Theorem 2.2.1. Let R(s, t)−1(k,l), R(s, t)−2(k,l), R(s, t)−3(k,l) and
R(s, t)−4(k,l) denote the 1-corner truncated rectangular grid graph, the 2-corner
truncated rectangular grid graph, the 3-corner truncated rectangular grid graph
and the 4-corner truncated rectangular grid graph as defined above, respec-
tively. Then:

(a) R(s, t)−1(k,l) contains a spanning 2-connected subgraph with (at most)
|V |+1 edges and is hamiltonian if and only if both s · t and k · l are even
or both s · t and k · l are odd.

(b) R(s, t)−2(k,l) contains a spanning 2-connected subgraph with
• |V | edges if s · t is even and at least one of k and l is even if both s
and t are even;
• |V | + 2 edges if s and t are even and k and l are odd;
• |V | + 1 edges in all other cases.
These numbers of edges are all best possible.

(c) R(s, t)−3(k,l) contains a spanning 2-connected subgraph with
• |V | edges if both s · t and k · l are even;
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• |V | + 2 edges if all of s, t, k and l are odd;
• |V | + 1 edges in all other cases.
These numbers of edges are all best possible.

(d) R(s, t)−4(k,l) contains a spanning 2-connected subgraph with (at most)
|V | + 3 edges and is hamiltonian if and only if s · t is even. The bound
|V | + 3 is best possible for any odd numbers s, t, k and l.

Proof. We need the following result due to Grinberg for the proof of Theorem
2.2.1.

Lemma 2.2.2. (Grinberg [23])
Suppose a planar graph G has a Hamilton cycle H. Let G be drawn in the
plane, and let ri denote the number of faces inside H bounded by i edges in
this planar embedding. Let r

′

i be the number of faces outside H bounded by i
edges. Then the numbers ri and r

′

i satisfy the following equation.

∑

i

(i − 2)(ri − r
′

i) = 0.

We use this lemma to show that R(s, t)−1(k,l) and R(s, t)−3(k,l) contain no
Hamilton cycle if s · t and k · l have a different parity, and that R(s, t)−2(k,l)

and R(s, t)−4(k,l) contain no Hamilton cycle if s · t is odd.

Corollary 2.2.3. R(m,n)−j(k,l) contains no Hamilton cycle if (s · t and k · l
have a different parity for j = 1 or 3) or (s · t is odd for j = 2 or 4).

Proof. There is exactly one face with 2(s + t− 2) edges and there are exactly
(s− 1)(t− 1)− j · k · l faces with four edges in the planar (natural) drawing of
the j-corner truncated rectangular grid graph R(s, t)−j(k,l) for j = 1, 2, 3 or 4.
Let this graph be hamiltonian. Then, by Lemma 2.2.2, we have

(2(s + t − 2) − 2)(−1) + (4 − 2)(r4 − r
′

4) = 0.

Hence

r4 − r
′

4 = s + t − 3. (2.1)

It is easy to check that the number of faces with four edges is

r4 + r
′

4 = (s − 1)(t − 1) − j · k · l. (2.2)
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From equations (2.1) and (2.2) we obtain

2r4 = s · t − j · k · l − 2. (2.3)

It implies that either s · t and k · l are even or s · t and k · l are odd for j = 1
or 3, and that s · t is even for j = 2 or 4.

Lemma 2.2.4. R(s, t)−2(k,l) contains no spanning 2-connected subgraph with
at most |V | + 1 edges if both s and t are even and both k and l are odd.

Proof. First, consider a bipartition (S, T ) of R(s, t) for some positive even
integers s and t. Assume that one of the corner vertices is in S. Then one
easily shows that the opposite corner vertex is also in S, whereas the two other
corner vertices are in |T | and that |S| = |T |. This can be proved by induction
on s and t, and removing the cycle of the outer face if s, t ≥ 4.

Secondly, consider a bipartition (S, T ) of R(k, l) for odd k and l. Assume that
one of the corner vertices is in S (if s, t ≥ 3; otherwise consider an end vertex).
Then we can show that all corner vertices (end vertices) are in S, and that
|S| = |T | + 1. This can be proved by induction on s and t, and removing the
cycle of the outer face if s, t ≥ 3.

So if we remove the two opposite corner R(k, l)’s from R(s, t), we reduce |S| by
two more units than |T |, implying that R(s, t)−2(k,l) has a bipartition (S′, T ′)
with |T ′| = |S′|+ 2. In any spanning 2-connected subgraph G of R(s, t)−2(k,l)

all vertices in T ′ have degree at least 2, hence |E(G)| ≥ 2|T ′| = |T ′|+ |S′|+2 =
|V (G)| + 2. This completes the proof of Lemma 2.2.4.

Lemma 2.2.5. R(s, t)−3(k,l) contains no spanning 2-connected subgraph with
at most |V | + 1 edges if all of s, t, k and l are odd.

Proof. Consider a bipartition (S, T ) of R(s, t) for odd s and t. Assume that
one of the corner vertices is in S. By the same arguments as in the proof
of Lemma 2.2.4, then all corner vertices are in S, and |S| = |T | + 1. The
same holds for R(k, l) if k and l are odd. So if we remove the three corner
R(k, l)’s from R(s, t), we reduce |S| by three more units than |T |, implying
that R(s, t)−3(k,l) has a bipartition (S′, T ′) with |T ′| = |S′|+2. In any spanning
2-connected subgraph G of R(s, t)−3(k,l) all vertices in T ′ have degree at least
2, hence |E(G)| ≥ 2|T ′| = |T ′| + |S′| + 2 = |V (G)| + 2. This completes the
proof of Lemma 2.2.5.
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Lemma 2.2.6. R(s, t)−4(k,l) contains no spanning 2-connected subgraph with
at most |V | + 2 edges if s, t, k and l are odd.

Proof. First, consider a bipartition (S, T ) of R(s, t) for odd s and t. Assume
that one of the corner vertices is in S. By the same arguments as in the
proof of Lemma 2.2.4, then all corner vertices are in S, and |S| = |T | + 1.
The same holds for R(k, l) if k and l are odd. So if we remove the four corner
R(k, l)’s from R(s, t), we reduce |S| by four more units than |T |, implying that
R(s, t)−4(k,l) has a bipartition (S′, T ′) with |T ′| = |S′| + 3. In any spanning
2-connected subgraph G for R(s, t)−4(k,l) all vertices in T ′ have degree at least
2, hence |E(G)| ≥ 2|T ′| = |T ′| + |S′| + 3 = |V (G)| + 3. This completes the
proof of Lemma 2.2.6.

We complete the proof of Theorem 2.2.1 by showing, through construction,
the existence of a Hamilton cycle or a spanning 2-connected subgraph with at
most |V | + 3 edges, in all cases where s = 12 or 13, t = 10 or 11, k = 2 or 3
and l = 1, 2 or 3. Meanwhile, for other values of s, t, k and l, it is not difficult
to see, from the patterns in the figures that now follow, how to extend the
solutions.

(a) (b) (c)

Figure 2.2: Hamilton cycles for (a) R(12, 11)−1(2,3) (b) R(12, 11)−1(3,2)

(c) R(13, 11)−1(3,1)

A Hamilton cycle for R(12, 11)−1(2,3) is shown in Figure 2.2(a). The pattern in
this figure can be used for finding a Hamilton cycle for the 1-corner truncated
rectangular grid graph for either (any numbers t and l, and any even numbers
s and k) or (any numbers s and k, and any even numbers t and l). In Figure
2.2(b) we show a Hamilton cycle for R(12, 11)−1(3,2) . The pattern in Figure
2.2(b) can be used for finding a Hamilton cycle for the 1-corner truncated
rectangular grid graph for either (any number t, any even numbers s and l,
and any odd number k) or (any number s, any even numbers t and k, and
any odd number l). Meanwhile, in Figure 2.2(c) we show a Hamilton cycle
for R(13, 11)−1(3,1) . The pattern in Figure 2.2(c) can be used for finding a
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Hamilton cycle for the 1-corner truncated rectangular grid graph for any odd
numbers s, t, k and l.

(a) (b)

Figure 2.3: Spanning 2-connected subgraphs with |V | + 1 edges for
(a) R(12, 11)−1(3,1) (b) R(13, 11)−1(2,3)

A spanning 2-connected subgraph for R(12, 11)−1(3,1) with |V | + 1 edges is
shown in Figure 2.3(a). The pattern in this figure can be used for finding such
a spanning subgraph with |V |+1 edges for the 1-corner truncated rectangular
grid graph for any even number s or t and for any odd numbers k and l. In
Figure 2.3(b) we show a spanning 2-connected subgraph with |V |+1 edges for
R(13, 11)−1(2,3) . The pattern in Figure 3(b) can be used for finding a spanning
2-connected subgraph with |V |+1 edges for the 1-corner truncated rectangular
grid graph for any odd numbers s and t and for any even number k or l.

A Hamilton cycle for R(12, 11)−2(2,3) is shown in Figure 2.4(a). The pattern in
this figure can be used for finding a Hamilton cycle for the 2-corner truncated
rectangular grid graph for either (any numbers t and l, and any even numbers
s and k) or (any numbers s and k, and any even numbers t and l). In Figure
2.4(b) we show a Hamilton cycle for R(12, 11)−2(3,2) . The pattern in Figure
2.4(b) can be used for finding a Hamilton cycle for the 2-corner truncated
rectangular grid graph for either (any even numbers s and l, and any odd
numbers t and k) or (any even numbers t and k, and any odd numbers s
and l). In Figure 2.4(c) we show a Hamilton cycle for R(12, 11)−2(3,3) . The
pattern in Figure 2.4(c) can be used for finding a Hamilton cycle for the 2-
corner truncated rectangular grid graph for either (any even number s, and
any odd numbers t, k and l) or (any even number t, and any odd numbers s,
k and l).

A spanning 2-connected subgraph for R(13, 11)−2(3,2) with |V | + 1 edges is
shown in Figure 2.5(a). The pattern in this figure can be used for finding such
a spanning subgraph with |V |+1 edges for the 2-corner truncated rectangular
grid graph for either (any number l, and any odd numbers s, t and k) or (any
number k, and any odd numbers s, t and l). In Figure 2.5(b) we show a span-
ning 2-connected subgraph with |V |+1 edges for R(13, 11)−2(2,2) . The pattern
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(a) (b) (c)

Figure 2.4: Hamilton cycles for (a) R(12, 11)−2(2,3) (b) R(12, 11)−2(3,2)

(c) R(12, 11)−2(3,3)

(a) (b) (c)

Figure 2.5: Spanning 2-connected subgraphs for (a) R(13, 11)−2(3,2) with
|V |+1 edges (b) R(13, 11)−2(2,2) with |V |+1 edges (c) R(12, 10)−2(3,3) with
|V | + 2 edges

in Figure 2.5(b) can be used for finding a spanning 2-connected subgraph with
|V | + 1 edges for the 2-corner truncated rectangular grid graph for any even
numbers k and l and any odd numbers s and t. In Figure 2.5(c) we show a
spanning 2-connected subgraph with |V | + 2 edges for R(12, 10)−2(3,3) . The
pattern in this figure can be used for finding a spanning 2-connected subgraph
with |V | + 2 edges for the 2-corner truncated rectangular grid graph for any
even numbers s, t, and any odd numbers k and l. This is the optimum value
for the minimum number of edges in such a spanning 2-connected subgraph.

(a) (b)

Figure 2.6: Hamilton cycles for (a) R(12, 11)−3(2,3) (b) R(12, 11)−3(3,2)

Hamilton cycles for R(12, 11)−3(2,3) and R(12, 11)−3(3,2) are shown in Figure
2.6. The pattern in Figure 2.6(a) can be used for finding a Hamilton cycle
for the 3-corner truncated rectangular grid graph for either (any numbers t
and l, and any even numbers s and k) or (any numbers s and k, and any
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even numbers t and l). The pattern in Figure 2.6(b) can be used for finding
a Hamilton cycle for the 3-corner truncated rectangular grid graph for either
(any even numbers s and l, and any odd numbers t and k) or (any even
numbers t and k, and any odd numbers s and l).

(a) (b) (c) (d) (e)

Figure 2.7: Spanning 2-connected subgraphs for (a) R(12, 10)−3(3,3) with
|V |+1 edges (b) R(12, 11)−3(3,3) with |V |+1 edges (c) R(13, 11)−3(2,2) with
|V |+1 edges (d) R(13, 11)−3(3,2) with |V |+1 edges (e) R(13, 11)−3(3,3) with
|V | + 2 edges

In Figure 2.7(a), Figure 2.7(b), Figure 2.7(c) and Figure 2.7(d) we show span-
ning 2-connected subgraphs for the 3-corner truncated rectangular grid graphs
R(12, 10)−3(3,3) , R(12, 11)−3(3,3) , R(13, 11)−3(2,2) and R(13, 11)−3(3,2) , respec-
tively, with |V |+1 edges. The pattern in Figure 2.7(a) can be used for finding
such a spanning 2-connected subgraph for any even numbers s and t, and any
odd numbers k and l. The pattern in Figure 2.7(b) can be used for finding
such a spanning 2-connected subgraph for either (any even number s, and any
odd numbers t, k and l) or (any even number t, and any odd numbers s, k
and l). The pattern in Figure 2.7(c) can be used for finding such a spanning
2-connected subgraph for any even numbers k and l, and any odd numbers s
and t. The pattern in Figure 2.7(d) can be used for finding such a spanning
2-connected subgraph for either (any even number l, and any odd numbers
s, t and k) or (any even number k, and any odd numbers s, t and l). In
Figure 2.7(e) we show a spanning 2-connected subgraph with |V |+2 edges for
R(13, 11)−3(3,3) . The pattern in this figure can be used for finding a spanning
2-connected subgraph with |V |+ 2 edges for the 3-corner truncated rectangu-
lar grid graph for any odd numbers s, t, k and l. This is the optimum value
for the minimum number of edges in such a spanning 2-connected subgraph.

Hamilton cycles for R(12, 11)−4(2,3) and R(12, 11)−4(3,2) are shown in Figure
2.8. The pattern in Figure 2.8(a) can be used for finding a Hamilton cycle for
the 4-corner truncated rectangular grid graph for either (any numbers t and
l, and any even numbers s and k) or (any numbers s and k, and any even
numbers t and l). Meanwhile, the pattern in Figure 2.8(b) can be used for
finding a Hamilton cycle for the 4-corner truncated rectangular grid graph for
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(a) (b)

Figure 2.8: Hamilton cycles for (a) R(12, 11)−4(2,3) (b) R(12, 11)−4(3,2)

either (any numbers t and l, any even number s, and any odd number k) or
(any numbers s and k, any even number t, and any odd number l).

(a) (b)

Figure 2.9: Spanning 2-connected subgraphs for (a) R(13, 11)−4(2,3) with
|V | + 1 edges (b) R(13, 11)−4(3,3) with |V | + 3 edges

In Figure 2.9(a), we show a spanning 2-connected subgraph with |V |+1 edges
for R(13, 11)−4(2,3) . The pattern in this figure can be used for finding a span-
ning 2-connected subgraph with |V |+ 1 edges for the 4-corner truncated rect-
angular grid graph for any odd numbers s and t, and for any even number k
or l. In Figure 2.9(b) we show a spanning 2-connected subgraph with |V | + 3
edges for R(13, 11)−4(3,1) . The pattern in this figure can be used for finding a
spanning 2-connected subgraph with |V | + 3 edges for the 4-corner truncated
rectangular grid graph for any odd numbers s, t, k and l. This is the opti-
mum value for the minimum number of edges in such a spanning 2-connected
subgraph.

2.3 Spanning 2-connected subgraphs of alphabet

graphs

We now introduce the 26 classes of grid graphs which we call alphabet graphs.
For every letter λ of the alphabet {a, b, . . . , z} we define a corresponding sub-
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graph Λm,n of R(3m− 2, 5n− 4) for all m ≥ 3, n ≥ 3. These alphabet graphs
{Am,n, Bm,n, . . . , Zm,n} are shown in Figure 2.10 for m = 4 and n = 3. It is
clear from these figures how these graphs should be extended for other values
of m and n. We avoid the tedious details of defining all these 26 graph classes
formally. Note that the extension of these classes to m = 2 or n = 2 causes
problems with the definition of grid graphs: for instance, the natural definition
of E2,2 would not result in an induced subgraph of G∞.

Figure 2.10: Alphabet graphs in order from A to Z for m = 4 and n = 3

Notice that from these 26 classes, there is one class of alphabet graphs with
two holes, namely the graph Bm,n; six classes with one hole, namely the graphs
Am,n,Dm,n, Om,n, Pm,n, Qm,n and Rm,n; the remaining 19 classes contain no
holes, i.e. are solid grid graphs.

We refer to these classes in the next result just by the capital letters, omitting
the indices. Spanning 2-connected subgraphs with a minimum number of edges
for the alphabet graphs for m = n were studied in [39]. It is a continuation of
the work started in [37]. Subsequently, in [42] these results were generalized
to the following theorem.

Theorem 2.3.1. Let m ≥ 3 and n ≥ 3. Let A,B, . . . , Z denote the alphabet
graphs Am,n, Bm,n, . . . , Zm,n as defined above. Then:

(a) A,D,O and P are hamiltonian.
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(b) E and F contain a spanning 2-connected subgraph with (at most) |V |+1
edges and are hamiltonian if and only if n is even.

(c) N contains a spanning 2-connected subgraph with (at most) |V |+1 edges
and is hamiltonian if and only if m and n have a different parity.

(d) Q contains a spanning 2-connected subgraph with (at most) |V |+1 edges
and is hamiltonian if and only if m is odd or n is even.

(e) R contains a spanning 2-connected subgraph with (at most) |V |+1 edges
and is hamiltonian if and only if m is even or n is odd.

(f) W contains a spanning 2-connected subgraph with
• |V | edges if m is even;
• |V | + 1 edges if both m and n are odd;
• |V | + 2 edges if m is odd and n is even.
These numbers of edges are all best possible.

(g) X contains a spanning 2-connected subgraph with
• |V | edges if either (m is even) or (m is odd, m ≥ 7 and n is even);
• |V | + 1 edges if either (m and n are odd) or (m=5 and n is even);
• |V | + 2 edges if m=3 and n is even.

(h) The remaining alphabet graphs contain a spanning 2-connected subgraph
with (at most) |V | + 1 edges and are hamiltonian if and only if m · n is
even.

Proof. First, we prove the following corollaries of Lemma 2.2.2. After that
we prove Lemma 2.3.7. Finally, we show, through construction, spanning
2-connected subgraphs with as few edges as possible for all alphabet graphs.

Corollary 2.3.2. E and F contain no Hamilton cycle if n is odd.

Proof. We divide the proof into two cases.

Case 1 We consider the alphabet graph E. There is exactly one face with
12(m− 1) + 10(n− 1) edges and there are exactly 10(m− 1)(n− 1) faces with
four edges in the planar (natural) drawing of this graph. Let E be hamiltonian.
Then, by Lemma 2.2.2, we have

(12(m − 1) + 10(n − 1) − 2)(−1) + (4 − 2)(r4 − r
′

4) = 0.
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Hence

r4 − r
′

4 = 6m + 5n − 12. (2.4)

It is known that the number of faces with four edges is

r4 + r
′

4 = 10m · n − 10m − 10n + 10. (2.5)

From equations (2.4) and (2.5) we obtain

2r4 = 10m · n − 4m − 5n − 2. (2.6)

So, n is even.

Case 2 We consider the alphabet graph F . There is exactly one face with
8(m−1)+10(n−1) edges and there are exactly 8(m−1)(n−1) faces with four
edges in the planar (natural) drawing of this graph. Let F be hamiltonian.
Then, by Lemma 2.2.2 and using a method similar to that used in the proof
of Case 1, we obtain

2r4 = 8m · n − 4m − 3n − 2. (2.7)

So, n is even.

Corollary 2.3.3. N contains no Hamilton cycle if m and n have the same
parity.

Proof. There is exactly one face with 6(m−1)+14(n−1) edges and there are
exactly 10(m−1)(n−1) faces with four edges in the planar (natural) drawing
of the graph N . Let N be hamiltonian. Then, by Lemma 2.2.2 and using a
method similar to that used in the proof of Corollary 2.3.2, we obtain

2r4 = 10m · n − 7m − 3n − 1. (2.8)

So, m and n have a different parity.

Corollary 2.3.4. Q contains no Hamilton cycle if m is even and n is odd.
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Proof. It is easy to check that there is exactly one face with 8(m−1)+10(n−1)
edges, one face with 2(m+n−2) edges and there are exactly 11(m−1)(n−1)
faces with four edges in the planar (natural) drawing of the graph Q. Let Q
be hamiltonian. Then, by Lemma 2.2.2 and using a method similar to that
used in the proof of Corollary 2.3.2, we obtain

2r4 = 11m · n − 7m − 6n + 1 − (m + n − 3)(r2(m+n−2) − r
′

2(m+n−2)). (2.9)

So, m is odd or n is even since (r2(m+n−2) − r
′

2(m+n−2)) is −1 or 1.

Corollary 2.3.5. R contains no Hamilton cycle if m is odd and n is even.

Proof. We can check that there is exactly one face with 6(m − 1) + 12(n − 1)
edges, one face with 2(m+n−2) edges and there are exactly 11(m−1)(n−1)
faces with four edges in the planar (natural) drawing of the graph R. Let R
be hamiltonian. Then, by Lemma 2.2.2 and using a method similar to that
used in the proof of Corollary 2.3.2, we obtain

2r4 = 11m · n − 8m − 5n + 1 − (m + n − 3)(r2(m+n−2) − r
′

2(m+n−2)). (2.10)

So, m is even or n is odd since (r2(m+n−2) − r
′

2(m+n−2)) is −1 or 1.

Corollary 2.3.6. B, C, G, H, I, J , K, L, M , S, T , U , V , W , X, Y and
Z contain no Hamilton cycle if m · n is odd.

Proof. We divide the proof into two cases.

Case 1 We consider the alphabet graph B. There is exactly one face with
6(m − 1) + 10(n − 1) edges, there are two faces with 2(m + n − 2) edges
and there are exactly 13(m − 1)(n − 1) faces with four edges in the planar
(natural) drawing of B. Let B be hamiltonian. Then, by Lemma 2.2.2 and
using a method similar to that used in the proof of Corollary 2.3.2, we obtain

2r4 = 13m · n − 10m − 8n + 4 − (m + n − 3)(r2(m+n−2) − r
′

2(m+n−2)). (2.11)

So, m · n is even since (r2(m+n−2) − r
′

2(m+n−2)) is −2, 0 or 2.

Case 2 We consider the alphabet graphs C, G, H, I, J , K, L, M , S, T ,
U , V , W , X, Y and Z. They are solid grid graphs. So the only faces to
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be considered in the planar (natural) drawing of every one of these graphs
are the single outer face and the faces with four edges. Let these graphs
be hamiltonian. The number of edges in the outer face is always even since
they form a cycle and the graphs are bipartite. This number is then always
2x(m− 1)+2y(n− 1) for some positive integers x and y. The number of faces
with four edges is always of the form z(m− 1)(n− 1) for some positive integer
z. Then, by Lemma 2.2.2 and using a method similar to that used in the proof
of Corollary 2.3.2, we obtain

2r4 = z · m · n + (x − z)m + (y − z)n + (z − x − y − 1). (2.12)

Since

(x, y, z) =
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(5, 5, 9) for C
(5, 7, 11) for G,X, Y
(3, 9, 11) for H,U
(3, 5, 15) for I
(3, 7, 9) for J,K
(3, 5, 7) for L, T
(3, 7, 13) for M
(7, 5, 11) for S
(3, 7, 11) for V,W
(5, 5, 13) for Z,

z is odd, and x − z, y − z and z − x − y − 1 are even. So, m · n is even.

A

B

C

Figure 2.11: Partition of the alphabet graph W5,4

Lemma 2.3.7. W contains no spanning 2-connected subgraph with at most
|V | + 1 edges if m is odd and n is even.

Proof. Consider the alphabet graph W for odd m and even n. We can partition
this graph into three rectangles; name them A (on the left), B (in the middle)
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and C (on the right). A is R(m, 4n − 3), B is R(m − 2, 2n − 1) and C is
R(m, 5n−4). For illustration, look at the partition of the alphabet graph W5,4

in Figure 2.11. All of the rectangles are bipartite graphs with a bipartition of
the vertices, say in S and T , where we start with S in a corner vertex of A. It is
easy to check that A and B have one more vertex from S than from T , whereas
C has the same number of vertices from S and from T . So, |V (W ) ∩ S| =
|V (W )∩ T |+ 2. In any spanning 2-connected subgraph G of W all vertices in
S have degree at least 2, hence |E(G)| ≥ 2|S| = |S| + |T | + 2 = |V (G)| + 2.
This completes the proof of Lemma 2.3.7.

We complete the proof of Theorem 2.3.1 by showing, through construction,
the existence of a Hamilton cycle or a spanning 2-connected subgraph with
at most |V | + 2 edges, in all cases where m = 3, 5, 6 or 7 and n = 4 or 5.
Meanwhile, for other values of m and n, it is not difficult to see, from the
patterns in the figures that now follow, how to extend the solutions.

Hamilton cycles for the alphabet graphs A, D, O, and P are shown in Figure
2.12 for m = 5 and n = 4, in Figure 2.13 for m = 6 and n = 4, and in Figure
2.14 for m = 7 and n = 5. The patterns in Figure 2.12 can be used for finding
Hamilton cycles for these graphs for any odd number m and any even number
n; the patterns in Figure 2.13 can be used for finding Hamilton cycles for
these graphs for any even number m and any number n; and the patterns in
Figure 2.14 can be used for finding Hamilton cycles for these graphs for any
odd numbers m and n.

In Figure 2.15, we show Hamilton cycles for the alphabet graphs E5,4, F5,4,
N5,4, N6,5, Q6,4, Q7,5, R6,4 and R7,5. The patterns in Figure 2.15(a) and Figure
2.15(b) can be used for finding Hamilton cycles for the alphabet graphs E and
F , respectively, for any number m and any even number n. The patterns in
Figure 2.15(c) and Figure 2.15(d) can be used for finding Hamilton cycles for

Figure 2.12: Hamilton cycles for the alphabet graphs A, D, O, and P for
m = 5 and n = 4
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Figure 2.13: Hamilton cycles for the alphabet graphs A, D, O, and P for
m = 6 and n = 4

Figure 2.14: Hamilton cycles for the alphabet graphs A, D, O, and P for
m = 7 and n = 5

the alphabet graph N (the pattern in Figure 2.15(c) for any odd number m
and any even number n, the pattern in Figure 2.15(d) for any even number
m and any odd number n). The patterns in Figure 2.15(e) and Figure 2.15(f)
can be used for finding Hamilton cycles for the alphabet graph Q (the pattern
in Figure 2.15(e) for any number m and any even number n, the pattern in
Figure 2.15(f) for any odd numbers m and n). The patterns in Figure 2.15(g)
and Figure 2.15(h) can be used for finding Hamilton cycles for the alphabet
graph R (the pattern in Figure 2.15(g) for any even number m and any number
n, the pattern in Figure 2.15(h) for any odd numbers m and n).

In Figure 2.16, we show spanning 2-connected subgraphs with |V | + 1 edges
for the alphabet graphs E6,5, F6,5, N6,4, N7,5, Q6,5 and R5,4. The pattern in
Figure 2.16(a) can be used for determining such a spanning subgraph for the
alphabet graph E for any number m and any odd number n. The pattern in
Figure 2.16(b) can be used for determining such a spanning subgraph for the
alphabet graph F for any number m and any odd number n. The patterns
in Figure 2.16(c) and Figure 2.16(d) can be used for finding such a spanning
subgraph for the alphabet graph N (the pattern in Figure 2.16(c) for any
even numbers m and n, the pattern in Figure 2.16(d) for any odd numbers
m and n). The pattern in Figure 2.16(e) can be used for determining such
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(a) (c)(b) (d)

(e) (f) (g) (h)

Figure 2.15: Hamilton cycles for the alphabet graphs (a) E5,4 (b) F5,4

(c) N5,4 (d) N6,5 (e) Q6,4 (f) Q7,5 (g) R6,4 (h) R7,5

(a) (b) (c)

(d) (e) (f)

Figure 2.16: Spanning 2-connected subgraphs with |V | + 1 edges for the al-
phabet graphs (a) E6,5 (b) F6,5 (c) N6,4 (d) N7,5 (e) Q6,5 (f) R5,4
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a spanning subgraph for the alphabet graph Q for any even number m and
any odd number n. The pattern in Figure 2.16(f) can be used for determining
such a spanning subgraph for the alphabet graph R for any odd number m
and any even number n.

(a) (b) (c)

Figure 2.17: (a) A Hamilton cycle for the alphabet graph W6,4 (b) A span-
ning 2-connected subgraph with |V | + 1 edges for the alphabet graph W7,5

(c) A spanning 2-connected subgraph with |V | + 2 edges for the alphabet
graph W5,4

We show a Hamilton cycle for the alphabet graph W6,4 in Figure 2.17(a).
The pattern in Figure 2.17(a) can be used for finding a Hamilton cycle for the
alphabet graph W for any even number m and any number n. In Figure 2.17(b)
is shown a spanning 2-connected subgraph with |V |+1 edges for the alphabet
graph W7,5. The pattern in Figure 2.17(b) can be used for determining such
a spanning subgraph for the alphabet graph W for any odd numbers m and
n. In Figure 2.17(c) is shown a spanning 2-connected subgraph with |V | + 2
edges for the alphabet graph W5,4. The pattern in Figure 2.17(c) can be used
for determining a spanning 2-connected subgraph with |V | + 2 edges for the
alphabet graph W for any odd number m and any even number n. This
is the optimum value for the minimum number of edges in such a spanning
2-connected subgraph.

We show Hamilton cycles for the alphabet graphs X6,4 in Figure 2.18(a) and
X7,4 in Figure 2.18(b). The pattern in Figure 2.18(a) can be used for finding a
Hamilton cycle for the alphabet graph X for any even number m and any num-
ber n, whereas the pattern in Figure 2.18(b) can be used for finding a Hamilton
cycle for any odd number m, m ≥ 7 and any even number n. Meanwhile, in
Figure 2.18(c) and Figure 2.18(d) are shown spanning 2-connected subgraphs
with |V | + 1 edges for the alphabet graphs X7,5 and X5,4, respectively. The
patterns in Figure 2.18(c) and Figure 2.18(d) can be used for determining
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(a) (b) (c) (d) (e)

Figure 2.18: Hamilton cycles for the alphabet graphs (a) X6,4 (b) X7,4;
Spanning 2-connected subgraphs with |V | + 1 edges for the alphabet graphs
c) X7,5 (d) X5,4; (e) A spanning 2-connected subgraph with |V | + 2 edges
for the alphabet graph X3,4

(a) (b)

Figure 2.19: Hamilton cycles for the alphabet graphs (a) Z5,4 (b) Z6,5

spanning 2-connected subgraphs with |V |+ 1 edges for the alphabet graph X
(the pattern in Figure 2.18(c) for any odd numbers m and n, the pattern in
Figure 2.18(d) for m = 5 and any even number n). In Figure 2.18(e) is shown
a spanning 2-connected subgraph with |V | + 2 edges for the alphabet graph
X3,4. The pattern in Figure 2.18(e) can be used for determining a spanning
2-connected subgraph with |V |+ 2 edges for the alphabet graph X for m = 3
and any even number n. We are not sure that this is the optimum value for
the minimum number of edges in a spanning 2-connected subgraph.

We show Hamilton cycles for the alphabet graph Z5,4 in Figure 2.19(a) and
Z6,5 in Figure 2.19(b). The pattern in Figure 2.19(a) can be used for finding
a Hamilton cycle for the alphabet graph Z for any number m and any even
number n, whereas the pattern in Figure 2.19(b) can be used for finding a
Hamilton cycle for any even number m and any odd number n.
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Figure 2.20: Hamilton cycles for the alphabet graphs B, C, G, H, I, J , K, L,
M , S, T , U , V and Y for m = 5 and n = 4

Figure 2.21: Hamilton cycles for the alphabet graphs B, C, G, H, I, J , K, L,
M , S, T , U , V and Y for m = 6 and n = 4
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Figure 2.22: Spanning 2-connected subgraphs with |V | + 1 edges for the al-
phabet graphs B, C, G, H, I, J , K, L, M , S, T , U , V , Y and Z for m = 7
and n = 5
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Hamilton cycles for the remaining alphabet graphs are shown in Figure 2.20
for m = 5 and n = 4 and in Figure 2.21 for m = 6 and n = 4. The patterns in
Figure 2.20 can be used for finding Hamilton cycles for these graphs for any
odd number m and any even number n. The patterns in Figure 2.21 can be
used for determining Hamilton cycles for these graphs for any even number
m and any number n. Finally, in Figure 2.22 we show spanning 2-connected
subgraphs with |V | + 1 edges for the alphabet graphs in (viii) for m = 7 and
n = 5. The patterns in this last figure can be used for determining such
spanning subgraphs for these graphs for any odd numbers m and n.

To conclude this section, we present the remaining open problem.

Problem 2.3.8.

(a) Is there a Hamilton cycle for the alphabet graph Xm,n for m = 5 and
any even n?

(b) Is there a spanning 2-connected subgraph with (at most) |V | + 1 edges
for the alphabet graph Xm,n for m = 3 and any even n?





Chapter 3

Ramsey Numbers for Paths

Versus Wheels, Kipases or

Fans

Abstract In this chapter we study the Ramsey numbers for
paths versus wheels, kipases or fans. We determine the values of
R(Pn,Wm), R(Pn, K̂m) and R(Pn, Fm) for some values of n and
m. We also give lower bounds and upper bounds for R(Pn,Wm),
R(Pn, K̂m) and R(Pn, Fm) for the other values of n and m.

3.1 Introduction

We recall that the Ramsey number R(F,H) for two graphs F and H is defined
as the smallest positive integer p such that every graph G on p vertices satisfies
the following condition: G contains F as a subgraph or G contains H as a
subgraph.

We study the Ramsey numbers for paths versus wheels, kipases or fans. The
Ramsey numbers for paths versus wheels, for paths versus kipases and for
paths versus fans are presented in Section 3.2, Section 3.3 and Section 3.4,
respectively.

45
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3.2 Path-wheel Ramsey numbers

In [44] we studied the Ramsey numbers for paths versus wheels. We determine
the values of R(Pn,Wm) for the following values of n and m: n = 1, 2, 3 or 5
and m ≥ 3; n = 4 and m = 3, 4, 5 or 7; n ≥ 6 and (3 ≤ odd m ≤ 2n−1) or (4 ≤
even m ≤ n + 1); odd n ≥ 7 and m = 2n − 2 or m = 2n or m ≥ (n− 3)2; odd
n ≥ 9 and q ·n−2q+1 ≤ m ≤ q ·n−q+2 with 3 ≤ q ≤ n−5. Moreover, we give
lower bounds and upper bounds for R(Pn,Wm) for the other values of m and
n. These results are presented in this section. The Ramsey numbers for ‘small’
paths versus wheels or the Ramsey numbers for paths versus ‘small’ wheels
are given in Theorem 3.2.2. The Ramsey numbers for odd paths versus ‘large’
wheels are given in the corollary based on Lemma 3.2.3. In Corollary 3.2.5
and Theorem 3.2.6 we present lower bounds and upper bounds for R(Pn,Wm)
for (odd n ≥ 7 and q · n − q + 3 ≤ m ≤ q · n − 2q + n − 2 with 2 ≤ q ≤ n − 5)
or (n ≥ 6 and n + 2 ≤ even m ≤ 2n − 4) or (even n ≥ 4 and m = 2n − 2 or
m ≥ 2n).

Let us start with Lemma 3.2.1. This lemma plays a key role in the proofs for
some lemmas or some theorems in this chapter.

Lemma 3.2.1. Let n ≥ 3 and G be a graph on at least n vertices containing
no Pn. Let the paths P 1, P 2, . . . , P k in G be chosen in the following way:
⋃k

j=1 V (P j) = V (G), P 1 is a longest path in G, and, if k > 1, P i+1 is a

longest path in G −
⋃i

j=1 V (P j) for 1 ≤ i ≤ k − 1. Denote by `j the number

of vertices on the path P j . Let z be an end vertex of P k. Then:

(a) `1 ≥ `2 ≥ . . . ≥ `k;

(b) If `k ≥ bn/2c, then N(z) ⊂ V (P k);

(c) If `k < bn/2c, then |N(z)| ≤ bn/2c − 1.

Proof. (a) obviously follows from the choice of the paths. From this choice
we can also deduce that for any integer x with 1 ≤ x < k, the number of
neighbors of z in V (P x) is

{

≤
⌊

`x+1−2`k

2

⌋

if `x ≥ 2`k + 1

0 if `x < 2`k + 1.
(3.1)

This can be checked easily: First order the neighbors of z on P x according
to the order of their appearance on P x in a fixed orientation. Then observe
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that between any two successive neighbors of z on P x, there is at least one
nonneighbor of z, while before the first and after the last neighbor of z on P x,
there are at least `k nonneighbors of z.

(b) Assume `k ≥ bn/2c. Then 2`k + 1 ≥ n > `1. So by the above observation,
we conclude that there is no neighbor of z in V (G) \ V (P k).

(c) Now assume `k < bn/2c. If z has no neighbors in V (G) \ V (P k), we are
done. If z has some neighbors in V (G) \ V (P k), similar counting arguments
as above yield the desired result: Denote by h1, . . . , ht the numbers of vertices
on the paths P 1, . . . , P k that contain a neighbor of z, chosen in such a way
that ht ≥ . . . ≥ h1, and denote by d1, . . . , dt the numbers of neighbors of z on
the corresponding paths. Then, arguing as above, we obtain h1 = `k ≥ d1 + 1
and h2 ≥ 2h1 + 2d2 − 1. Similarly, observing that z connects any two of the
considered paths, and using the same elementary counting techniques, we get,
if t ≥ 3, hj ≥ 2(

hj−1−1
2 + 2) + 2dj − 1 = hj−1 + 2dj + 2 for 3 ≤ j ≤ t. This

implies, for t ≥ 2, that ht ≥ 2(d1 + . . .+ dt)+2(t− 2)+1 ≥ 2|N(z)|+1. Since
ht ≤ n − 1 and |N(z)| is an integer, this yields the desired result.

Theorem 3.2.2.

R(Pn,Wm) =







































1 for n = 1 and m ≥ 3
m + 1 for either n = 2 and m ≥ 3

or n = 3 and even m ≥ 4
m + 2 for n = 3 and odd m ≥ 5
3n − 2 for either n = 3 and m = 3

or n ≥ 4 and 3 ≤ odd m ≤ 2n − 1
2n − 1 for n ≥ 4 and 4 ≤ even m ≤ n + 1.

Proof. The cases for which n = 1 or n = 2 are almost trivial and left to the
reader. The rest of the proof we divide into three cases.

Case 1 n = 3 and m ≥ 4.
The graph consisting of

⌊

m+1
2

⌋

disjoint copies of K2 shows that

R(P3,Wm) >

{

m for even m
m + 1 for odd m.

Now let G be a graph that contains no P3 and has order

|V (G)| =

{

m + 1 for even m
m + 2 for odd m.
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Since |V (G)| is odd and G contains no P3, there is a vertex z ∈ V (G) with
|N(z)| = 0. Since G− z contains no P3, the vertices of V (G)\{z} have degree
at least m − 2 in G − z. This implies that there exists a cycle Cm in G − z.
Hence G contains a Wm.

Case 2 (n = 3 and m = 3) or (n ≥ 4 and 3 ≤ odd m ≤ 2n − 1).
The graph 3Kn−1 shows that R(Pn,Wm) > 3n − 3. Let G be a graph on
3n− 2 vertices and assume that G contains no Pn. We are going to show that
G contains a Wm. Choose the paths P 1, . . . , P k and the vertex z as in Lemma
3.2.1. Since |V (G)| = 3n − 2, `k ≤ n − 2. If `k < bn/2c then, by Lemma
3.2.1(c), we obtain |N(z)| ≤ bn/2c − 1 ≤ n − 3. If bn/2c ≤ `k ≤ n − 2 then,
by Lemma 3.2.1(b), we obtain |N(z)| ≤ `k − 1 ≤ n− 3. Hence, |N [z]| ≤ n− 2.
We are going to show that there is a Wm in G with z as a hub. We distinguish
the following three subcases.

Subcase 2.1 n ≥ 3 and 3 ≤ odd m < b(3n + 1)/2c.
Then |V (G) \ N [z] | ≥ (3n − 2) − (n − 2) = 2n. We can apply the result from
[13] that R(Pn, Cm) = 2n − 1 for 3 ≤ odd m ≤ b(3n + 1)/2c. This implies
that G − N [z] contains a Cm. So, there is a Wm in G with z as a hub.

Subcase 2.2 n ≥ 4 and b(3n + 1)/2c ≤ odd m ≤ 2n − 1 and |N(z)| ≤
bn/2c − 1.
Then |V (G) \N [z] | ≥ (3n− 2)−bn/2c ≥ 2n− 1+ bn/2c− 1 ≥ m+ bn/2c− 1.
We can apply the result from [13] that R(Pn, Cm) = m + bn/2c − 1 for odd
m ≥ b(3n + 1)/2c. This implies that G − N [z] contains a Cm. So, there is a
Wm in G with z as a hub.

Subcase 2.3 n ≥ 4 and b(3n + 1)/2c ≤ odd m ≤ 2n−1 and |N(z)| ≥ bn/2c.
By Lemma 3.2.1(b), we find N(z) ⊂ V (P k). Hence, `k ≥ bn/2c + 1. Since
|V (G)| = 3n − 2 and `k ≥ bn/2c + 1, 4 ≤ k ≤ 5.

For k = 5 and m = 3 mod 4, take the first dm/4e vertices of P 1 (in some
fixed orientation) and name them u1, . . . , udm/4e, starting at an end vertex;
take the first dm/4e vertices of P 2 (in some fixed orientation) and name
them v1, . . . , vdm/4e, starting at an end vertex; take the first dm/4e vertices
of P 3 (in some fixed orientation) and name them w1, . . . , wdm/4e, starting
at an end vertex; take the first bm/4c vertices of P 4 (in some fixed ori-
entation) and name them x1, . . . , xbm/4c, starting at an end vertex. Since
P 1 is chosen as a longest path in G, it is obvious that uivi 6∈ E(G) for
i = 1, . . . , dm/4e, uixi+1 6∈ E(G) for i = 1, . . . , bm/4c− 1, and ubm/4cwdm/4e 6∈
E(G). Since P 2 is chosen as a longest path in G − V (P 1), it is obvious that
viwi 6∈ E(G) for i = 1, . . . , dm/4e. Since P 3 is chosen as a longest path in
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G − (V (P 1) ∪ V (P 2)), it is obvious that wixi 6∈ E(G) for i = 1, . . . , bm/4c.
Since P 1 is chosen as a longest path in G, `4 ≥ bn/2c + 1 and m ≤ 2n − 1,
it is obvious that udm/4ex1 6∈ E(G). So we can obtain a cycle Cm in G, i.e.,
x1w1v1u1x2w2v2u2 . . . xbm/4cwbm/4cvbm/4cubm/4cwdm/4evdm/4eudm/4ex1. Hence,

there is a Wm in G with z as a hub.

For k = 5 and m = 1 mod 4, take the first bm/4c vertices of P 1 (in some
fixed orientation) and name them u1, . . . , ubm/4c, starting at an end vertex;
take the other end vertex of P 1 and name it u`1 ; take the first bm/4c ver-
tices of P 2 (in some fixed orientation) and name them v1, . . . , vbm/4c, starting
at an end vertex; take the first bm/4c vertices of P 3 (in some fixed ori-
entation) and name them w1, . . . , wbm/4c, starting at an end vertex; take
the first bm/4c vertices of P 4 (in some fixed orientation) and name them
x1, . . . , xbm/4c, starting at an end vertex. Since P 1 is chosen as a longest path
in G, it is obvious that uivi 6∈ E(G) for i = 1, . . . , bm/4c, uixi+1 6∈ E(G)
for i = 1, . . . , bm/4c − 1, ubm/4cxbm/4c 6∈ E(G), u`1wbm/4c 6∈ E(G) and
u`1x1 6∈ E(G). Since P 2 is chosen as a longest path in G − V (P 1), it is
obvious that viwi 6∈ E(G) for i = 1, . . . , bm/4c. Since P 3 is chosen as a
longest path in G − (V (P 1) ∪ V (P 2)), it is obvious that wixi 6∈ E(G) for
i = 1, . . . , bm/4c−1. So we can obtain a cycle Cm in G, i.e., x1w1v1u1x2w2v2u2

. . . xbm/4c−1wbm/4c−1vbm/4c−1ubm/4c−1xbm/4cubm/4cvbm/4c wbm/4cu`1x1. Hence,

there is a Wm in G with z as a hub.

For k = 4, name the vertices of P 1 (in some fixed orientation, starting at an
end vertex) u1, . . . , u`1 ; name the vertices of P 2 (in some fixed orientation,
starting at an end vertex) v1, . . . , v`2 ; name the vertices of P 3 (in some fixed
orientation, starting at an end vertex) w1, . . . , w`3 . Since P 1 is chosen as a
longest path in G, `1 ≤ n−1 and `3 ≥ bn/2c+1, it is obvious that uivi 6∈ E(G)
for i = 1, . . . , `2, uivi+1 6∈ E(G) for i = 1, . . . , `2 − 1, uiwi+1 6∈ E(G) for
i = 1, . . . , `3 − 1, and uiw1 6∈ E(G) for i = 1, . . . , `1. Since P 2 is chosen as a
longest path in G−V (P 1) and `3 ≥ bn/2c+1, it is obvious that viwi 6∈ E(G) for
i = 1, . . . , `3, and viw1 6∈ E(G) for i = 2, . . . , `2. Since `1 +`2 +`3+`4 = 3n−2
and `1 +`4−`2 ≤ (n−1), 2`2 +`3 = (`1 +`2 +`3 +`4)− (`1 +`4−`2) ≥ 2n−1.
So we can obtain a cycle Cm for m = 7, . . . , 2`2 + `3 in G, i.e.,

• if m = 3t − 2 and 3 ≤ t ≤ `3, Cm : w1v1u1w2v2u2 . . . wt−1vt−1ut−1vtw1;

• if m = 3t−1 and 3 ≤ t ≤ `3, Cm : w1v1u1w2v2u2 . . . wt−1vt−1ut−1wtvtw1;

• if m = 3t and 3 ≤ t ≤ `3, Cm : w1v1u1w2v2u2 . . . wt−1vt−1ut−1wtvtutw1;
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• if m = 3`3 + 2t − 1 and 1 ≤ t ≤ `2 − `3, Cm : w1v1u1w2v2u2 . . .
w`3v`3u`3v`3+1 u`3+1v`3+2u`3+2 . . . v`3+t−1u`3+t−1v`3+tw1;

• if m = 3`3+2t and 1 ≤ t ≤ `2−`3, Cm : w1v1u1w2v2u2 . . . w`3v`3u`3v`3+1

u`3+1v`3+2u`3+2 . . . v`3+t−1u`3+t−1v`3+tu`3+tw1.

Hence, there is a Wm in G with z as a hub.

Case 3 n ≥ 4 and 4 ≤ even m ≤ n + 1.
The graph 2Kn−1 shows that R(Pn,Wm) > 2n − 2. Let G be a graph on
2n − 1 vertices and assume that G contains no Pn. We are going to show
that G contains a Wm. Choose the paths P 1, . . . , P k and the vertex z as in
Lemma 3.2.1. Since |V (G)| = 2n − 1 and G does not contain a Pn, k ≥ 3 and
`k ≤ b(2n − 1)/3c ≤ n − 2. By similar arguments as in the proof of Case 2,
this implies that |N(z)| ≤ n − 3. We are going to show that there is a Wm in
G with z as a hub. We distinguish the following two subcases.

Subcase 3.1 |N(z)| ≤ bn/2c − 1.
Then |V (G) \ N [z] | ≥ (2n − 1) − bn/2c ≥ n + m/2 − 1. We can apply the
result from [13] that R(Pn, Cm) = n + m/2 − 1 for 4 ≤ even m ≤ n + 1. This
implies that G − N [z] contains a Cm. So, there is a Wm in G with z as a hub.

Subcase 3.2 |N(z)| ≥ bn/2c.
By Lemma 3.2.1(b), we find N(z) ⊂ V (P k). Hence, `k ≥ bn/2c + 1. Since
|V (G)| = 2n − 1, k = 3. Take the first m/2 vertices of P 1 (in some fixed
orientation) and name them u1, . . . , um/2, starting at an end vertex. Also
take the first m/2 vertices of P 2 (in some fixed orientation) and name them
v1, . . . , vm/2, starting at an end vertex. Since P 1 is chosen as a longest path
in G, it is obvious that uivi 6∈ E(G) for i = 1, . . . ,m/2, uivi+1 6∈ E(G) for
i = 1, . . . ,m/2 − 1, and um/2v1 6∈ E(G). So there is a Wm in G with z as a
hub.

The following lemma provides upper bounds that yield several path-wheel
Ramsey numbers in the sequel.

Lemma 3.2.3. If n is odd, n ≥ 5 and m ≥ 2n − 2, then

R(Pn,Wm) ≤

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

Proof. Let G be a graph that contains no Pn and has order

|V (G)| =

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

(3.2)
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Choose the paths P 1, . . . , P k and the vertex z in G as in Lemma 3.2.1. Because
of (3.2), not all P i can have n−1 vertices, so `k ≤ n−2. By similar arguments
as in the proof of Case 2 of Theorem 3.2.2, this implies that |N(z)| ≤ n − 3.
Hence, z is not a neighbor of (at least) (m + n− 2)− 1− (n− 3) = m vertices.
We will use the following result that has been proved in [13]: R(Pn, Cm) =
m + bn/2c − 1 for m ≥ b(3n + 1)/2c. We distinguish the following cases.

Case 1 |N(z)| ≤ bn/2c − 1
Since |V (G) \ N [z] | ≥ m + bn/2c − 1, we find that G − N [z] contains a Cm.
So, there is a Wm in G with z as a hub.

Case 2 Suppose that there is no choice for P k and z such that Case 1
applies. Then |N(w)| ≥ bn/2c for any end vertex w of a path on `k vertices
in G −

⋃k−1
j=1 V (P j). This implies that all neighbors of such w are in V (P k)

and `k ≥ bn/2c + 1. So for the two end vertices z1 and z2 of P k we have
that |N(zi) ∩ V (P k)| ≥ bn/2c ≥ `k/2. Let P k : z1 = v1v2 . . . v`k

= z2. Then,
by standard arguments in hamiltonian graph theory, we can find an index
i ∈ {2, . . . , `k − 1} such that z1vi+1 and z2vi are edges of G. It is clear that
we can find a cycle on `k vertices in G. This implies that any vertex of V (P k)
could serve as w. By the assumption of this last case, we conclude that there
are no edges in G between V (P k) and the other vertices. This also implies
that all vertices of P k have degree in G at least

{

m + 1 if |V (G)| = m + n − 1
m if |V (G)| = m + n − 2.

We now turn to P k−1 and consider one of its end vertices w. Since `k−1 ≥
`k ≥ bn/2c + 1, similar arguments as in the proof of Lemma 3.2.1 show that
all neighbors of w are on P k−1. If |N(w)| < bn/2c, we get a Wm in G as in
Case 1. So we may assume |N(wi)∩V (P k−1)| ≥ bn/2c ≥ `k−1/2 for both end
vertices w1 and w2 of P k−1. By similar arguments as before we obtain a cycle
on `k−1 vertices in G. This implies that any vertex of V (P k−1) could serve as
w. By the assumption of this last case, we conclude that there are no edges in
G between V (P k−1) and the other vertices. This also implies that all vertices
of P k−1 have degree in G at least

{

m if |V (G)| = m + n − 1
m − 1 if |V (G)| = m + n − 2.

(3.3)

(Note that P k−1 can have n − 1 vertices, whereas `k ≤ n − 2.)

Repeating the above arguments for P k−2, . . . , P 1 we eventually conclude that
all vertices of G have degree in G at least as in (3.3).
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Now let H = G−V (P k). If |V (G)| = m+n−1, then all vertices in V (H) have
degree at least m− `k ≥ m/2 + (n− 1)− `k ≥ 1

2(m + 2n− 2− `k − (n− 2)) =
1
2(m + n − `k) = 1

2 (|V (H)| + 1). By a standard result in hamiltonian graph
theory this implies that H is pancyclic, i.e., it contains cycles of every length
from 3 up to |V (H)| (see e.g. [11] Corollary 4.31). In particular, H contains
a Cm, hence G contains a Wm with z as a hub. If V (G) = m + n− 2, then all
vertices in V (H) have degree at least m − 1 − `k ≥ m/2 + (n − 1) − 1 − `k ≥
1
2(m+2n−4− `k− (n−2)) = 1

2 (m+n−2− `k) = 1
2 |V (H)|. This implies that

H is pancyclic unless H is a complete bipartite graph Kp,p with p = 1
2 |V (H)|

(see e.g. [11] Corollary 4.31). In the first case we get a Wm in G as before. In
the latter case, if |V (H)| = m we also obtain a Wm in G; if |V (H)| ≥ m + 1,
then note that G ⊃ H ⊃ Kp ⊃ Pp. By our assumptions this implies that
p ≤ n − 1, while on the other hand p ≥ 1

2(m + 1), so 1
2(m + 1) ≤ n − 1 or

m ≤ 2n − 3, contradicting that m ≥ 2n − 2. This completes the proof of
Lemma 3.2.3.

Corollary 3.2.4. If (n = 5 and m = 8 or m ≥ 10) or (n is odd, n ≥ 7
and m = 2n − 2 or m = 2n or m ≥ (n − 3)2) or (n is odd, n ≥ 9 and
q · n − 2q + 1 ≤ m ≤ q · n − q + 2 with 3 ≤ q ≤ n − 5), then

R(Pn,Wm) =

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

Proof. Let r denote the remainder of m divided by n− 1, so m = p(n− 1) + r
for some 0 ≤ r ≤ n − 2. Then for (n = 5 and m = 8 or m ≥ 10) or
(odd n ≥ 7 and m = 2n − 2 or m = 2n or m ≥ (n − 3)2) or (n ≥ 9 and
q · n − 2q + 1 ≤ m ≤ q · n − q + 2 with 3 ≤ q ≤ n − 5) the graphs







(p − 1)Kn−1 ∪ 2Kn−2 for r = 0
(p + 1)Kn−1 for r = 1 or 2
(p + r + 1 − n)Kn−1 ∪ (n + 1 − r)Kn−2 for other values of r

show that

R(Pn,Wm) >

{

m + n − 2 for m = 1 mod(n − 1)
m + n − 3 for other values of m.

Lemma 3.2.3 completes the proof.
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Corollary 3.2.5. If n is odd, n ≥ 7 and q · n− q + 3 ≤ m ≤ q ·n− 2q + n− 2
with 2 ≤ q ≤ n − 5, then

m+n−2 ≥ R(Pn,Wm) ≥ max

{⌊

m

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

dm/(n − 1)e

⌋}

.

Proof. Let t =
⌈

m
n−1

⌉

and let s denote the remainder of m − 1 divided by t.

Then for m and n satisfying
⌊

m
n−1

⌋

(n−1)+n ≥ m+
⌊

m−1
t

⌋

, the graph tKn−1

shows that R(Pn,Wm) >
⌊

m
n−1

⌋

(n − 1) + n − 1.

For other values of m and n, the graph sKd(m−1)/te ∪ (t − s + 1)Kb(m−1)/tc

shows that R(Pn,Wm) > m − 1 +
⌊

m−1
dm/(n−1)e

⌋

.

The upper bound comes from Lemma 3.2.3.

Theorem 3.2.6. If (n ≥ 6 and m is even, n+2 ≤ m ≤ 2n−4) or (n is even,
n ≥ 4 and m = 2n − 2 or m ≥ 2n), then

m + b3n/2c − 2 ≥ R(Pn,Wm) ≥

max

{⌊

m − 1

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

d(m − 1)/(n − 1)e

⌋}

.

Proof. Let t =
⌈

m−1
n−1

⌉

and let s denote the remainder of m − 1 divided by t.

Then for m and n satisfying
⌊

m−1
n−1

⌋

(n−1)+n ≥ m+
⌊

m−1
t

⌋

, the graph tKn−1

shows that R(Pn,Wm) >
⌊

m−1
n−1

⌋

(n − 1) + n − 1.

For other values of m and n, the graph sKd(m−1)/te ∪ (t − s + 1)Kb(m−1)/tc

shows that R(Pn,Wm) > m − 1 +
⌊

m−1
d(m−1)/(n−1)e

⌋

.

Let G be a graph on m + b3n/2c − 2 vertices, and assume that G contains no
Pn. Choose the paths P 1, . . . , P k and the vertex z in G as in Lemma 3.2.1.
Since `k ≤ n−1 and by similar arguments as in the proof of Case 2 of Theorem
3.2.2, |N(z)| ≤ n − 2. Hence, |V (G) \ N [z] | ≥ m + bn/2c − 1. We can apply
the result from [13] that R(Pn, Cm) = m + bn/2c − 1 for (even m ≥ n ≥ 2) or
(n ≥ 4 and m ≥ 3n/2). This implies that G − N [z] contains a Cm. So, there
is a Wm in G with z as a hub.



54 Chapter 3

3.3 Path-kipas Ramsey numbers

We studied in [45] the Ramsey numbers for paths versus kipases. We determine
the Ramsey numbers R(Pn, K̂m) for the following values of n and m: 1 ≤ n ≤ 5
and m ≥ 3; n ≥ 6 and 3 ≤ odd m ≤ 2n − 1 or 4 ≤ even m ≤ n + 1;
6 ≤ n ≤ 7 and m = 2n − 2 or m ≥ 2n; n ≥ 8 and m = 2n − 2 or m = 2n
or (q · n − 2q + 1 ≤ m ≤ q · n − q + 2 with 3 ≤ q ≤ n − 5) or m ≥ (n − 3)2;
odd n ≥ 9 and (q · n − 3q + 1 ≤ m ≤ q · n − 2q with 3 ≤ q ≤ (n − 3)/2)
or (q · n − q − n + 4 ≤ m ≤ q · n − 2q with (n − 1)/2 ≤ q ≤ n − 4). These
results are presented in this section. The Ramsey numbers for ‘small’ paths
versus kipases or paths versus ‘small’ kipases are given in Corollary 3.3.1. The
Ramsey numbers for paths versus ‘large’ kipases are given in Corollary 3.3.3
and Corollary 3.3.5. Moreover, we also give lower bounds and upper bounds
for R(Pn, K̂m) for (odd n ≥ 11 and q · n− q + 3 ≤ m ≤ q · n− 3q + n− 3 with
2 ≤ q ≤ (n − 7)/2) or (even n ≥ 8 and q · n − q + 3 ≤ m ≤ q · n − 2q + n − 2
with 2 ≤ q ≤ n − 5) or (n ≥ 6 and n + 2 ≤ even m ≤ 2n − 4) in Corollary
3.3.6, Corollary 3.3.7 and Theorem 3.3.8.

Corollary 3.3.1.

R(Pn, K̂m) =







































1 for n = 1 and m ≥ 3
m + 1 for either n = 2 and m ≥ 3

or n = 3 and even m ≥ 4
m + 2 for n = 3 and odd m ≥ 5
3n − 2 for either n = 3 and m = 3

or n ≥ 4 and 3 ≤ odd m ≤ 2n − 1
2n − 1 for n ≥ 4 and 4 ≤ even m ≤ n + 1.

Proof. The graphs































P1 for n = 1 and m ≥ 3
mP1 for n = 2 and m ≥ 3
⌊

m+1
2

⌋

K2 for n = 3 and m ≥ 4
3Kn−1 for either n = 3 and m = 3

or n ≥ 4 and 3 ≤ odd m ≤ 2n − 1
2Kn−1 for n ≥ 4 and 4 ≤ even m ≤ n + 1

give the best lower bounds for R(Pn, K̂m) for the values of m and n in Corollary
3.3.1. Since K̂m is a subgraph of Wm, Theorem 3.2.2 completes the proof.
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Lemma 3.3.2 and Lemma 3.3.4 provide upper bounds that yield several Ram-
sey numbers in the sequel.

Lemma 3.3.2. If n ≥ 4 and m ≥ 2n − 2, then

R(Pn, K̂m) ≤

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

Proof. Let G be a graph that contains no Pn and has order

|V (G)| =

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

(3.4)

Choose the paths P 1, . . . , P k and the vertex z in G as in Lemma 3.2.1. Because
of (3.4), not all P i can have n − 1 vertices, so `k ≤ n − 2. If `k < bn/2c then,
by Lemma 3.2.1(c), we obtain |N(z)| ≤ bn/2c − 1 ≤ n − 3. If bn/2c ≤ `k ≤
n − 2 then, by Lemma 3.2.1(b), we obtain |N(z)| ≤ `k − 1 ≤ n − 3. Hence,
|N [z]| ≤ n − 2. We will use the following result that has been proved in [13]:
R(Pt, Cs) = s + bt/2c − 1 for s ≥ b(3t + 1)/2c. We distinguish the following
cases.

Case 1 |N(z)| ≤ bn/2c − 2 or n is odd and |N(z)| = bn/2c − 1.
Since |V (G) \ N [z] | ≥ m + bn/2c − 1, we find that G − N [z] contains a Cm.
So, there is a K̂m in G with z as a hub.

Case 2 n is even and |N(z)| = n/2 − 1.
Since |V (G)\N [z] | ≥ (m+n−2)−n/2 = m+n/2−2, we find that G − N [z]
contains a Cm−1; denote its vertices by v1, v2, v3, . . . , vm−1 in the order of
appearance on the cycle with a fixed orientation. There are n/2 − 1 vertices
in U = V (G) \ (V (Cm−1) ∪ N [z]), say u1, u2, . . . , un/2−1. If some vertex vi

(i = 1, . . . ,m − 1) is no neighbor of some vertex uj (j = 1, . . . , n/2 − 1),
w.l.o.g. assume vm−1u1 6∈ E(G). Then G contains a K̂m with z as a hub and
its other vertices v1, v2, v3, . . . , vm−2, vm−1, u1. Now let us assume that each of
the vi is adjacent to all uj in G. For every choice of a subset of n/2 vertices
from V (Cm−1), there is a path on n − 1 vertices in G alternating between
the vertices of this subset and the vertices of U , starting and terminating in
two arbitrary vertices from the subset. Since G contains no Pn, there are no
edges vivj ∈ E(G) for i, j ∈ {1, . . . ,m − 1}. This implies that V (Cm−1) ∪ {z}
induces a Km in G. Since G contains no Pn, no vi is adjacent to a vertex of
N(z). This implies that G contains a Km+1 − zw for any vertex w ∈ N(z),
and hence G contains a K̂m with one of the vi as a hub.
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Case 3 Suppose that there is no choice for P k and z such that one of the
former cases applies. Then |N(w)| ≥ bn/2c for any end vertex w of a path
on `k vertices in G −

⋃k−1
j=1 V (P j). This implies that all neighbors of such w

are in V (P k) and `k ≥ bn/2c + 1. So for the two end vertices z1 and z2 of
P k we have that |N(zi) ∩ V (P k)| ≥ bn/2c ≥ `k/2. By standard arguments
in hamiltonian graph theory, we can find an index i ∈ {2, . . . , `k − 1} such
that z1vi+1 and z2vi are edges of G. It is clear that we can find a cycle on `k

vertices in G. This implies that any vertex of V (P k) could serve as w. By the
assumption of this last case, we conclude that there are no edges in G between
V (P k) and the other vertices. This also implies that all vertices of P k have
degree at least m in G.

We now turn to P k−1 and consider one of its end vertices w. Since `k−1 ≥
`k ≥ bn/2c + 1, similar arguments as in the proof of Lemma 3.2.1 show that
all neighbors of w are on P k−1. If |N(w)| < bn/2c, we get a K̂m in G as in
Case 1 or Case 2. So we may assume |N(wi) ∩ V (P k−1)| ≥ bn/2c ≥ `k−1/2
for both end vertices w1 and w2 of P k−1. By similar arguments as before we
obtain a cycle on `k−1 vertices in G. This implies that any vertex of V (P k−1)
could serve as w. By the assumption of this last case, we conclude that there
are no edges in G between V (P k−1) and the other vertices. This also implies
that all vertices of P k−1 have degree at least m−1 in G. (Note that P k−1 can
have n − 1 vertices, whereas `k ≤ n − 2.)

Repeating the above arguments for P k−2, . . . , P 1 we eventually conclude that
all vertices of G have degree at least m−1 in G. Now let H = G−V (P k). Then
all vertices in V (H) have degree at least m−1− `k ≥ m/2+(n−1)−1− `k ≥
1
2(m + 2n − 4 − `k − (n − 2)) = 1

2(m + n − 2 − `k) = 1
2(|V (H)| − 1). Hence,

there exists a Hamilton path in H. Since |V (H)| ≥ m and z is a neighbor of
all vertices in H (in G), it is clear that G contains a K̂m with z as a hub. This
completes the proof of Lemma 3.3.2.

Corollary 3.3.3. If (4 ≤ n ≤ 6 and m = 2n − 2 or m ≥ 2n) or (n ≥ 7 and
m = 2n − 2 or m = 2n or m ≥ (n − 3)2) or (n ≥ 8 and q · n − 2q + 1 ≤ m ≤
q · n − q + 2 with 3 ≤ q ≤ n − 5), then

R(Pn, K̂m) =

{

m + n − 1 for m = 1 mod(n − 1)
m + n − 2 for other values of m.

Proof. Let r denote the remainder of m divided by n− 1, so m = p(n− 1) + r
for some 0 ≤ r ≤ n − 2. Then for (4 ≤ n ≤ 6 and m = 2n − 2 or m ≥ 2n)
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or (n ≥ 7 and m = 2n − 2 or m = 2n or m ≥ (n − 3)2) or (n ≥ 8 and
q · n − 2q + 1 ≤ m ≤ q · n − q + 2 for 3 ≤ q ≤ n − 5), the graphs







(p − 1)Kn−1 ∪ 2Kn−2 for r = 0
(p + 1)Kn−1 for r = 1 or 2
(p + r + 1 − n)Kn−1 ∪ (n + 1 − r)Kn−2 for other values of r

show that

R(Pn, K̂m) >

{

m + n − 2 for m = 1 mod(n − 1)
m + n − 3 for other values of m.

Lemma 3.3.2 completes the proof.

Lemma 3.3.4. If n is odd, n ≥ 7 and q · n − q + 3 ≤ m ≤ q · n − 2q + n − 2
with 2 ≤ q ≤ n − 5, then R(Pn, K̂m) ≤ m + n − 3.

Proof. The proof is modeled along the lines of the proof of Lemma 3.3.2. Let
G be a graph on m + n − 3 vertices, and assume that G contains no Pn.
We will show that G contains a K̂m. Choose the paths P 1, . . . , P k and the
vertex z in G as in Lemma 3.2.1. Since |V (G)| = m + n − 3 with n ≥ 7 and
q·n−q+3 ≤ m ≤ q·n−2q+n−2 with 2 ≤ q ≤ n−5, k ≥ q+2, and therefore not
all P i can have more than n−3 vertices. So `k ≤ n−3. By similar arguments
as in the proof of Lemma 3.3.2, this implies that |N(z)| ≤ n − 4. We will use
the following result that has been proved in [13]: R(Pt, Cs) = s+ bt/2c− 1 for
s ≥ b(3t + 1)/2c. We distinguish the following cases.

Case 1 |N(z)| ≤ bn/2c − 2.
Since |V (G) \ N [z] | ≥ m + bn/2c − 1, we find that G − N [z] contains a Cm.
So, there is a K̂m in G with z as a hub.

Case 2 |N(z)| = bn/2c − 1.
Since |V (G) \ N [z] | = (m + n − 3) − bn/2c = m + bn/2c − 2, we find that
G − N [z] contains a Cm−1; denote its vertices by v1, v2, v3, . . . , vm−1 in the
order of appearance on the cycle with a fixed orientation. There are bn/2c−1
vertices in U = V (G) \ (V (Cm−1) ∪ N [z]), say u1, u2, . . . , ubn/2c−1. If some
vertex vi (i = 1, . . . ,m−1) is no neighbor of some vertex uj (j = 1, . . . , bn/2c−
1), w.l.o.g. assume vm−1u1 6∈ E(G). Then G contains a K̂m with z as a hub and
its other vertices v1, v2, v3, . . . , vm−2, vm−1, u1. Now let us assume that each of
the vi is adjacent to all uj in G. For every choice of a subset of bn/2c vertices
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from V (Cm−1), there is a path on n− 2 vertices in G alternating between the
vertices of this subset and the vertices of U , starting and terminating in two
arbitrary vertices from the subset. Let z1 ∈ N(z). Since G contains no Pn,
there are no edges viz ∈ E(G) and viz1 ∈ E(G) (i ∈ {1, . . . ,m− 1}) and there
is at most one edge vivj ∈ E(G) (for some i, j ∈ {1, . . . ,m − 1}). Assume (at
most) v1v2 ∈ E(G). This implies that G contains a K̂m with hub vm−1 and
its other vertices v1, z, v2, z1, v3, . . . , vm−4, vm−3, vm−2.

Case 3 Suppose that there is no choice for P k and z such that one of the
former cases applies. Then |N(w)| ≥ bn/2c for any end vertex w of a path on
`k vertices in G −

⋃k−1
j=1 V (P j). This implies that all neighbors of such w are

in V (P k) and `k ≥ bn/2c + 1. So for the two end vertices z1 and z2 of P k we
have that |N(zi) ∩ V (P k)| ≥ bn/2c ≥ `k/2. By similar arguments as in the
proof of Lemma 3.3.2 we obtain a cycle on `k vertices in G. This implies that
any vertex of V (P k) could serve as w. By the assumption of this last case, we
conclude that there are no edges in G between V (P k) and the other vertices.
This also implies that all vertices of P k have degree at least m in G.

We now turn to P k−1 and consider one of its end vertices w. Since `k−1 ≥
`k ≥ bn/2c + 1, similar arguments as in the proof of Lemma 3.2.1 show that
all neighbors of w are on P k−1. If |N(w)| < bn/2c, we get a K̂m in G as in
Case 1 or Case 2. So we may assume |N(wi) ∩ V (P k−1)| ≥ bn/2c ≥ `k−1/2
for both end vertices w1 and w2 of P k−1. By similar arguments as before we
obtain a cycle on `k−1 vertices in G. This implies that any vertex of V (P k−1)
could serve as w. By the assumption of this last case, we conclude that there
are no edges in G between V (P k−1) and the other vertices. This also implies
that all vertices of P k−1 have degree at least m−2 in G. (Note that P k−1 can
have n − 1 vertices, whereas `k ≤ n − 3.)

Repeating the above arguments for P k−2, . . . , P 1 we eventually conclude that
all vertices of G have degree at least m − 2 in G. Now let H = G − V (P k).
Then all vertices in V (H) have degree at least m−2−`k ≥ m/2+n−2−`k ≥
1
2(m + 2n − 4 − `k − (n − 3)) = 1

2(m + n − 1 − `k) = 1
2 (|V (H)| + 2). This

implies that there exists a Hamilton cycle in H. Since |V (H)| ≥ m and z is a
neighbor of all vertices in H (in G), it is clear that G contains a K̂m with z
as a hub. This completes the proof of Lemma 3.3.4.

Corollary 3.3.5. If (n = 7 and m = 15) or (n is odd, n ≥ 9 and (q·n−3q+1 ≤
m ≤ q · n − 2q with 3 ≤ q ≤ (n − 3)/2) or (q · n − q − n + 4 ≤ m ≤ q · n − 2q
with (n − 1)/2 ≤ q ≤ n − 4)), then R(Pn, K̂m) = m + n − 3.
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Proof. For n = 7 and m = 15, the graph 3K6 and for odd n ≥ 9 and m = q ·n−
2q−j with either (3 ≤ q ≤ (n−3)/2 and 0 ≤ j ≤ q−1) or ((n−1)/2 ≤ q ≤ n−5
and 0 ≤ j ≤ n − q − 4), the graph (q − j − 1)Kn−2 ∪ (j + 2)Kn−3 shows that
R(Pn, K̂m) > m + n − 4. Lemma 3.3.4 completes the proof.

Corollary 3.3.6. If n is odd, n ≥ 11 and q ·n− q+3 ≤ m ≤ q ·n− 3q +n− 3
with 2 ≤ q ≤ (n − 7)/2, then

m+n−3 ≥ R(Pn, K̂m) ≥ max

{⌊

m

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

dm/(n − 1)e

⌋}

.

Proof. Let t =
⌈

m
n−1

⌉

and let s denote the remainder of m − 1 divided by t.

Then for m and n satisfying
⌊

m
n−1

⌋

(n−1)+n ≥ m+
⌊

m−1
t

⌋

, the graph tKn−1

shows that R(Pn, Fm) >
⌊

m
n−1

⌋

(n − 1) + n − 1.

For other values of m and n, the graph sKd(m−1)/te ∪ (t − s + 1)Kb(m−1)/tc

shows that R(Pn, Fm) > m − 1 +
⌊

m−1
dm/(n−1)e

⌋

.

The upper bound comes from Lemma 3.3.4.

Corollary 3.3.7. If n is even, n ≥ 8 and q ·n− q +3 ≤ m ≤ q ·n− 2q +n− 2
with 2 ≤ q ≤ n − 5, then

m+n−2 ≥ R(Pn, K̂m) ≥ max

{⌊

m

n − 1

⌋

(n − 1) + n, m +

⌊

m − 1

dm/(n − 1)e

⌋}

.

Proof. Let t =
⌈

m
n−1

⌉

and let s denote the remainder of m − 1 divided by t.

Then for m and n satisfying
⌊

m
n−1

⌋

(n−1)+n ≥ m+
⌊

m−1
t

⌋

, the graph tKn−1

shows that R(Pn, K̂m) >
⌊

m
n−1

⌋

(n − 1) + n − 1.

For other values of m and n, the graph sKd(m−1)/te ∪ (t − s + 1)Kb(m−1)/tc

shows that R(Pn, K̂m) > m − 1 +
⌊

m−1
dm/(n−1)e

⌋

.

The upper bound comes from Lemma 3.3.2.
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Theorem 3.3.8. If n ≥ 6 and m is even with n + 2 ≤ m ≤ 2n − 4, then

m +

⌊

3n

2

⌋

− 2 ≥ R(Pn, K̂m) ≥

{

2n − 1 for n + 2 ≤ m ≤ n + bn/3c
3m
2 − 1 for n + bn/3c < m ≤ 2n − 4.

Proof. For n ≥ 6 and n + 2 ≤ even m ≤ n + bn/3c, the graph 2Kn−1 shows
that R(Pn, K̂m) > 2n − 2. For n ≥ 6 and n + bn/3c < even m ≤ 2n − 4, the
graph Km/2 ∪ 2Km/2−1 shows that R(Pn, K̂m) > 3m

2 − 2.

Let G be a graph on m + b3n/2c − 2 vertices, and assume that G contains no
Pn. Choose the paths P 1, . . . , P k and the vertex z in G as in Lemma 3.2.1.
By Lemma 3.2.1, |N(z)| ≤ n− 2. Hence, |V (G) \N [z] | ≥ m + bn/2c − 1. We
can apply the result from [13] that R(Pn, Cm) = m + bn/2c − 1 for 2 ≤ n ≤
even m. This implies that G − N [z] contains a Cm. So, there is a K̂m in G
with z as a hub (there is even a wheel on m + 1 vertices).

3.4 Path-fan Ramsey numbers

We studied in [43] the Ramsey numbers for paths versus fans. We determine
the Ramsey numbers R(Pn, Fm) for the following values of n and m: 1 ≤ n ≤ 5
and m ≥ 2; n ≥ 6 and 2 ≤ m ≤ (n+1)/2; 6 ≤ n ≤ 7 and m ≥ n−1; n ≥ 8 and
n−1 ≤ m ≤ n or ((q ·n−2q +1)/2 ≤ m ≤ (q ·n− q +2)/2 with 3 ≤ q ≤ n−5)
or m ≥ (n − 3)2/2; odd n ≥ 9 and ((q · n − 3q + 1)/2 ≤ m ≤ (q · n − 2q)/2
with 3 ≤ q ≤ (n − 3)/2) or ((q · n − q − n + 4)/2 ≤ m ≤ (q · n − 2q)/2 with
(n−1)/2 ≤ q ≤ n−5). We present the Ramsey numbers for ‘small’ paths versus
fans or paths versus ‘small’ fans in Corollary 3.4.1, and the Ramsey numbers
for paths versus ‘large’ fans in Corollary 3.4.2 and Corollary 3.4.3. Moreover,
we give lower bounds and upper bounds for R(Pn, Fm) for (odd n ≥ 11 and
(q ·n− q + 4)/2 ≤ m ≤ (q · n− 3q + n− 3)/2 with 2 ≤ q ≤ (n− 7)/2) or (even
n ≥ 8 and (q · n − q + 3)/2 ≤ m ≤ (q · n − 2q + n − 2)/2 with 2 ≤ q ≤ n − 5)
or (n ≥ 6 and (n + 2)/2 ≤ m ≤ n − 2) in Corollary 3.4.4, Corollary 3.4.5 and
Corollary 3.4.6.

Corollary 3.4.1.

R(Pn, Fm) =







1 for n = 1 and m ≥ 2
2m + 1 for n = 2 or n = 3 and m ≥ 2
2n − 1 for n ≥ 4 and 2 ≤ m ≤ (n + 1)/2.
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Proof. The graphs














P1 for n = 1 and m ≥ 2
2mP1 for n = 2 and m ≥ 2
mK2 for n = 3 and m ≥ 2
2Kn−1 for n ≥ 4 and 2 ≤ m ≤ (n + 1)/2

give the best lower bounds for R(Pn, Fm) for the values of m and n in Corollary
3.4.1. Corollary 3.3.1 completes the proof.

Corollary 3.4.2. If (4 ≤ n ≤ 7 and m ≥ n−1) or (n ≥ 8 and n−1 ≤ m ≤ n
or ((q · n − 2q + 1)/2 ≤ m ≤ (q · n − q + 2)/2 with 3 ≤ q ≤ n − 5) or
m ≥ (n − 3)2/2), then

R(Pn, Fm) =

{

2m + n − 1 for 2m = 1 mod(n − 1)
2m + n − 2 for other values of m.

Proof. Let r denote the remainder of 2m divided by n−1, so 2m = p(n−1)+r
for some 0 ≤ r ≤ n − 2. Then for (4 ≤ n ≤ 7 and m ≥ n − 1) or (n ≥ 8 and
n− 1 ≤ m ≤ n or ((q ·n− 2q + 1)/2 ≤ m ≤ (q ·n− q + 2)/2 for 3 ≤ q ≤ n− 5)
or m ≥ (n − 3)2/2), the graphs







(p − 1)Kn−1 ∪ 2Kn−2 for r = 0
(p + 1)Kn−1 for r = 1 or 2
(p + r + 1 − n)Kn−1 ∪ (n + 1 − r)Kn−2 for other values of r

show that

R(Pn, Fm) >

{

2m + n − 2 for 2m = 1 mod(n − 1)
2m + n − 3 for other values of m.

Corollary 3.3.3 completes the proof.

Corollary 3.4.3. If n is odd, n ≥ 9 and either ((q · n − 3q + 1)/2 ≤ m ≤
(q ·n−2q)/2 with 3 ≤ q ≤ (n−3)/2) or ((q ·n−q−n+4)/2 ≤ m ≤ (q ·n−2q)/2
with (n − 1)/2 ≤ q ≤ n − 5), then R(Pn, Fm) = 2m + n − 3.

Proof. For odd n ≥ 9 and m = (q ·n−2q− j)/2 with either (3 ≤ q ≤ (n−3)/2
and 0 ≤ j ≤ q−1) or ((n−1)/2 ≤ q ≤ n−5 and 0 ≤ j ≤ n− q−4), the graph
(q − j − 1)Kn−2 ∪ (j + 2)Kn−3 shows that R(Pn, Fm) > 2m + n− 4. Corollary
3.3.5 completes the proof.
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Corollary 3.4.4. If n is odd, n ≥ 11 and (q ·n− q + 4)/2 ≤ m ≤ (q ·n− 3q +
n − 3)/2 with 2 ≤ q ≤ (n − 7)/2, then

2m + n − 3 ≥ R(Pn, Fm) ≥

max

{⌊

2m

n − 1

⌋

(n − 1) + n, 2m +

⌊

2m − 1

d2m/(n − 1)e

⌋}

.

Proof. Let t =
⌈

2m
n−1

⌉

and let s denote the remainder of 2m − 1 divided by

t. Then for m and n satisfying
⌊

2m
n−1

⌋

(n − 1) + n ≥ 2m +
⌊

2m−1
t

⌋

, the graph

tKn−1 shows that R(Pn, Fm) >
⌊

2m
n−1

⌋

(n − 1) + n − 1.

For other values of m and n, the graph sKd(2m−1)/te ∪ (t − s + 1)Kb(2m−1)/tc

shows that R(Pn, Fm) > 2m − 1 +
⌊

2m−1
d2m/(n−1)e

⌋

.

The upper bound comes from Corollary 3.3.6.

Corollary 3.4.5. If n is even, n ≥ 8 and (q ·n− q + 3)/2 ≤ m ≤ (q ·n− 2q +
n − 2)/2 with 2 ≤ q ≤ n − 5, then

2m + n − 2 ≥ R(Pn, Fm) ≥

max

{⌊

2m

n − 1

⌋

(n − 1) + n, 2m +

⌊

2m − 1

d2m/(n − 1)e

⌋}

.

Proof. Let t =
⌈

2m
n−1

⌉

and let s denote the remainder of 2m − 1 divided by

t. Then for m and n satisfying
⌊

2m
n−1

⌋

(n − 1) + n ≥ 2m +
⌊

2m−1
t

⌋

, the graph

tKn−1 shows that R(Pn, Fm) >
⌊

2m
n−1

⌋

(n − 1) + n − 1.

For other values of m and n, the graph sKd(2m−1)/te ∪ (t − s + 1)Kb(2m−1)/tc

shows that R(Pn, Fm) > 2m − 1 +
⌊

2m−1
d2m/(n−1)e

⌋

.

The upper bound comes from Corollary 3.3.7.

Corollary 3.4.6. If n ≥ 6 and (n + 2)/2 ≤ m ≤ n − 2, then

2m +

⌊

3n

2

⌋

− 2 ≥ R(Pn, Fm) ≥

{

2n − 1 for n+2
2 ≤ m ≤ n+bn/3c

2

3m − 1 for n+bn/3c
2 < m ≤ n − 2.
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Proof. For n ≥ 6 and n+2
2 ≤ m ≤ n+bn/3c

2 , the graph 2Kn−1 shows that

R(Pn, Fm) > 2n − 2. For n ≥ 6 and n+bn/3c
2 < m ≤ n − 2, the graph

Km ∪ 2Km−1 shows that R(Pn, Fm) > 3m − 2.

The upper bound comes from Theorem 3.3.8.





Chapter 4

λ-Backbone Colorings

Abstract In this chapter we study combinatorial and algorith-
mic aspects of λ-backbone coloring of graphs where the backbone
is a collection of pairwise disjoint stars or a perfect matching. We
determine a relation between the λ-backbone coloring numbers
and the chromatic numbers. We also study the special case where
the graph is a planar graph and the backbone is a perfect match-
ing. Besides that, we study the λ-backbone coloring numbers of
split graphs with star backbones or matching backbones or tree
backbones. Finally, we study the computational complexity of
computing the λ-backbone coloring number of a graph with a star
backbone or a matching backbone or a tree backbone or a path
backbone.

4.1 Introduction

Let H = (V,EH) be a spanning subgraph of G = (V,E) and let λ ≥ 2. For
convenience we repeat some definitions. Let G = (V,E) be a graph. A vertex
coloring f : V → {1, 2, 3, . . .} of V is proper, if |f(u) − f(v)| ≥ 1 holds for
all edges uv ∈ E. A proper vertex coloring f : V → {1, . . . , k} is called a
k-coloring, and the chromatic number χ(G) is the smallest integer k for which
there exists a k-coloring. A vertex coloring f is a λ-backbone coloring of (G,H),
if it is proper and if additionally |f(u)−f(v)| ≥ λ holds for all edges uv ∈ EH .

65
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The λ-backbone coloring number bbcλ(G,H) of (G,H) is the smallest integer
` for which there exists a λ-backbone coloring f : V → {1, . . . , `}. A spanning
subgraph H of a graph G is called a star backbone, a matching backbone, a
tree backbone or a path backbone of G if H is a collection of pairwise disjoint
stars, a perfect matching, a tree or a path, respectively.

We present a relation between the λ-backbone coloring number and the chro-
matic number where the backbone is a star backbone or a matching backbone
in Section 4.2 and Section 4.3, respectively. In Section 4.4 we consider pla-
nar graphs with matching backbones. In Subsection 4.5.1, Subsection 4.5.2
and Subsection 4.5.3 we present sharp upper bounds for the λ-backbone col-
oring numbers of split graphs with star backbones, matching backbones or
tree backbones, respectively. Finally, in Subsection 4.6.1 and in Subsection
4.6.2 we present the computational complexity of computing the λ-backbone
coloring number where the backbone is a collection of pairwise disjoint stars or
a perfect matching, and where the backbone is a tree or a path, respectively.

4.2 λ-Backbone coloring numbers of graphs with

star backbones

In [46] we showed for star backbones S of G the number of colors needed for
a λ-backbone coloring of (G,S) can roughly differ by a multiplicative factor
of at most 2 − 1

λ from the chromatic number χ(G). Their precise behavior is
summarized in the following theorem.

Theorem 4.2.1. For λ ≥ 2 the function Sλ(k) takes the following values:

(a) Sλ(2) = λ + 1;

(b) for 3 ≤ k ≤ 2λ − 3: Sλ(k) = d3k
2 e + λ − 2;

(c) for 2λ − 2 ≤ k ≤ 2λ − 1 with λ ≥ 3: Sλ(k) = k + 2λ − 2; S2(3) = 5;

(d) for k = 2λ with λ ≥ 3: Sλ(k) = 2k − 1; S2(4) = 6;

(e) for k ≥ 2λ + 1: Sλ(k) = 2k − bk
λc.

Proof. We divide the proof into two parts as follows.
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Part 1 Proof of the upper bounds.
If k = 2 then G is bipartite, and we use colors 1 and λ + 1. For k ≥ 3,
let G = (V,E) be a graph with χ(G) = k and let V1, . . . , Vk denote the
corresponding independent sets in a k-coloring. Let S = (V,ES) be a star
backbone of G.

First, we will give upper bounds for Sλ(k) in case 3 ≤ k ≤ 2λ − 3. Consider
the following color sets:

• Ci = {i, k + λ − 1 − i} for i = 1, . . . , bk
2c;

• Ci = {i, 2k + λ − 1 − i} for i = bk
2c + 1, . . . , k.

The union of these k color sets consists of 2k colors, namely the colors in
{1, . . . , k} together with the colors in {k+λ−1−bk

2 c, . . . , 2k+λ−1−(bk
2 c+1)}.

The largest color used is 2k + λ − 1 − (bk
2c + 1) = d3k

2 e + λ − 2.

We construct a λ-backbone coloring of (G,S) such that every vertex in Vi

(i = 1, . . . , k) is colored with a color in Ci.

For 1 ≤ i ≤ bk
2c a root vertex in Vi is colored with the first color of Ci. Its

leaves in a set Vj are colored with the second color of Cj. This does not give
any conflict, since the smallest gap appears if the root vertex is in Vbk

2
c and

one of its leaves is in Vbk
2
c−1, or the other way around. In both cases this gap

is k + λ − 1 − bk
2c − (bk

2c − 1) = k + λ − 2bk
2 c ≥ λ.

For bk
2c + 1 ≤ i ≤ k a root vertex in Vi is colored with the second color

of Ci. Its leaves in a set Vj are colored with the first color of Cj. This is
possible, since the smallest gap appears if the root vertex is in Vk and one
of its leaves is in Vk−1, or the other way around. In both cases this gap is
2k + λ − 1 − k − (k − 1) = λ.

For the case 2λ − 2 ≤ k ≤ 2λ − 1 with λ ≥ 3, and the case k = 2λ − 1 with
λ = 2 we use color sets:

• Ci = {i, 2λ − 1 + i} for i = 1, . . . , k − 1;

• Ck = {k}.

Note that these k color sets are pairwise disjoint. The union of these sets con-
sists of all the colors in {1, . . . , k} together with all the colors in {2λ, . . . , 2λ+
k − 2}.
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We construct a λ-backbone coloring of (G,S) such that for 1 ≤ i ≤ k every
vertex in Vi is colored with a color in Ci. This means that vertices in Vk are
assigned color k. A root vertex in Vi for 1 ≤ i ≤ dk

2e − 1 is assigned color i.

A root vertex in Vi for dk
2e ≤ i ≤ k − 1 is assigned color 2λ − 1 + i. This way

the distance between the color of a root vertex not in Vk and the color k of a
vertex in Vk is at least λ.

All other vertices in V are colored greedily and in arbitrary order: Let v ∈ Vi

(1 ≤ i ≤ k − 1) be a leaf vertex of a star S with root w. Let x be the color
assigned to w. Then colors x− λ + 1, . . . , x + λ− 1 are forbidden colors for v.
The distance between x + λ − 1 and x − λ + 1 is 2λ − 2. Since the two colors
in Ci have pairwise distance 2λ − 1, at least one of them is feasible for v.

For the case k = 2λ with λ ≥ 3 we use color sets:

• Ci = {i, 2λ − 1 + i} for i = 1, . . . , k − 1;

• Ck = {4λ − 1}.

By similar arguments as in the previous case we can construct a λ-backbone
coloring using at most 2k − 1 colors.

For proving that S2(4) ≤ 6 we use color sets C1 = {1}, C2 = {3, 2}, C3 = {4, 5}
and C4 = {6}, and choose the first colors in the sets for the root vertices.

For the case k ≥ 2λ + 1 we use color sets:

• Ci = {(i − 1)λ + 1} for i = 1, . . . , bk
λc;

• C ′
i = {d i·λ

λ−1e, k + i} for i = 1, . . . , bk
λc(λ − 1);

• C ′′
i = {bk

λcλ+ i, k+bk
λc(λ−1)+ i} for i = 1, . . . , k−bk

λcλ and k > bk
λcλ.

If j = s(λ − 1) + t for some integers s ≥ 0 and 0 ≤ t ≤ λ − 2, then d j·λ
λ−1e is

equal to s · λ in case t = 0 and to s · λ + t + 1 in case t > 0. Then Ci ∩ C ′
j is

empty for all 1 ≤ i ≤ bk
λc and 1 ≤ j ≤ bk

λc(λ − 1). Hence the k color sets as

defined above are pairwise disjoint, and cover the whole range 1, . . . , 2k−bk
λc.

We construct a λ-backbone coloring of (G,S) as follows. For 1 ≤ i ≤ bk
λc

vertices in Vi are assigned the color in Ci. Note that these colors are at least
λ apart from each other. For 1 ≤ i ≤ bk

λc(λ − 1) a root vertex in Vb k
λ
c+i is
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assigned the second color in C ′
i. For 1 ≤ i ≤ k−bk

λcλ a root vertex in Vb k
λ
c(λ)+i

is assigned the second color in C ′′
i . So far we have not created any conflict,

since a second color in a set C ′′
i is larger than a second color in any set C ′

j,
and the smallest gap between a second color in a set C ′

j and a color in a set

Ch is k + 1 − ((bk
λc − 1)λ + 1) = k − bk

λcλ + λ ≥ λ.

Note that both the distance k + i − d i·λ
λ−1e between two colors in color set C ′

i

and the distance k + bk
λc(λ − 1) + j − (λbk

λc + j) between two colors in color
set C ′′

j are at least

k + bk
λc(λ − 1) − bk

λcλ = k − bk
λc = dk(λ−1)

λ e ≥ d (2λ+1)(λ−1)
λ e = 2λ − 1.

This means that just as in previous cases all other vertices in V can be colored
greedily and in arbitrary order.

Part 2 Proof of the lower bounds.
Let λ ≥ 2. The case k = 2 is trivial. For k ≥ 3, we consider a complete
k-partite graph G that consists of k independent sets V1, . . . , Vk that are all
of cardinality k. Let S = (V,ES) be a star backbone of G that consists of k
stars Sk−1. Each Vi contains exactly one root vertex of some star in S and its
other k − 1 vertices are leaves from k − 1 different stars.

Consider some fixed λ-backbone `-coloring of (G,S). Since G is complete k-
partite, any color that shows up in some set Vi can not show up in any Vj

with j 6= i. We denote by Ci the set of colors that are used on vertices in Vi.
If |Ci| = 1, then Vi is called monochromatic, and if |Ci| ≥ 2, then Vi is called
polychromatic. We denote by s1 and s2 the number of monochromatic and
polychromatic sets, respectively. Then we immediately have s1 + s2 = k and
s1 + 2s2 ≤ ` implying

s1 ≥ 2k − `. (4.1)

A root in a monochromatic set is called monochromatic as well. A root color
is a color that is used for a root. From the above it is clear that each root has
a different color. So we have the following simple observation.

Observation 4.2.2. The number of different root colors is equal to k.

Since all stars in S have (exactly) one leaf in any set that does not contain
their root vertex, we immediately have the following.

Observation 4.2.3. If x is a root color, then there are at least k − 1 other
colors that have distance at least λ to x.
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Observation 4.2.4. If x is the color for the root in set Vi and Vj (j 6= i) is a
monochromatic set colored by y, then the distance between x and y is at least
λ.

If s2 = 0, then s1 = k, and by Observation 4.2.4 there are at least (k−1) gaps
of at least λ − 1 colors that can not be used to color the k roots. Then the
total number of colors needed is at least (k − 1)(λ − 1) + k = (k − 1)λ + 1. If
s2 > 0, the same observation implies that there are at least s1 gaps of at least
λ − 1 colors. In this case the total range of colors is at least s1(λ − 1) + k.
This way we have found

` ≥

{

(k − 1)λ + 1 if s2 = 0;
s1(λ − 1) + k if s2 > 0.

(4.2)

Due to Observation 4.2.3 we can prove the following lemma.

Lemma 4.2.5. If ` ≤ k+2λ−3 then only colors from A = {1, . . . , `−k−λ+2}
and B = {k + λ − 1, . . . , `} can be assigned to root vertices.

Proof. Suppose that a root v is assigned color c with c in {`−k−λ+3, . . . , k+
λ−2}. By Observation 4.2.3 there have to be at least k−1 colors with distance
at least λ from c. If λ + 1 ≤ c ≤ ` − λ, only colors in {1, . . . , c − λ} and in
{c+λ, . . . , `} can be used. These sets together contain c−λ+`− (c+λ)+1 =
` − 2λ + 1 ≤ k − 2 colors. Hence either c ≤ λ or c ≥ `− λ + 1 holds. If c ≤ λ,
then only colors in {c + λ, . . . , `} are at distance at least λ. The cardinality of
this set is `− (c + λ) + 1 ≤ `− (`− k−λ+ 3)−λ + 1 = k− 2. If c ≥ `−λ+ 1,
then only colors in {1, . . . , c − λ} are at distance at least λ. The cardinality
of this set is c − λ ≤ k + λ − 2 − λ = k − 2.

First we consider the case 3 ≤ k ≤ 2λ − 3. Suppose that there exists a λ-
backbone coloring of (G,S) with ` = d3k

2 e+ λ− 3 colors. Then ` ≤ k + 2λ− 3

and by Lemma 4.2.5 only colors in A = {1, . . . , dk
2e − 1} and colors in B =

{k + λ − 1, . . . , d3k
2 e + λ − 3} can be used on roots. Since the total number

of colors in A united with B is 2(dk
2 e − 1) < k, we obtain a contradiction by

Observation 4.2.2.

Let 2λ − 2 ≤ k ≤ 2λ − 1 with λ ≥ 3, or 2λ − 1 ≤ k ≤ 2λ with λ = 2. Suppose
that there exists a λ-backbone coloring of (G,S) with ` = k+2λ−3 colors. By
Lemma 4.2.5 only colors in A = {1, . . . , λ−1} and B = {k+λ−1, . . . , k+2λ−3}
may be used on roots. By (4.1), there exists at least one monochromatic set.
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Let y be the (root) color used on this set. Without loss of generality we may
assume that y is in A. By Observation 4.2.4 all other k − 1 root colors must
be in B. However, B contains λ − 1 < k − 1 colors.

Let k = 2λ with λ ≥ 3. Suppose that there exists a λ-backbone coloring of
(G,S) with 2k − 2 colors. If s2 = 0, then by (4.2) we have ` ≥ (k − 1)λ + 1 ≥
3k − 2. Hence s2 > 0. By (4.1), s1 ≥ 2. Together with (4.2) this implies that
s1 = 2, and ` = s1(λ − 1) + k. Then there are only three feasible ways to
choose k different root colors:

• monochromatic roots: 1, λ + 1, other roots: 2λ + 1, . . . , 4λ − 2;

• monochromatic roots: 1, 4λ − 2, other roots: λ + 1, . . . , 3λ − 2;

• monochromatic roots: 3λ − 2, 4λ − 2, other roots: 1, . . . , 2λ − 2.

Consider the first case. Since color 2λ + 1 is a root color, in every other color
set there must be at least one color that has distance at least λ to color 2λ+1.
This condition is already met for the sets with root color 1, root color λ+1 or
root colors 3λ+1, . . . , 4λ−2. However, the sets with root colors 2λ+2, . . . , 3λ
need an extra color. Hence, we need λ − 1 extra colors that have distance at
least λ to color 2λ + 1. There are exactly λ − 1 such colors available, namely
colors 2, . . . , λ. So one of the colors 2, . . . , λ must be in the same set with color
2λ + 2.

Simultaneously, since color 2λ + 2 is also a root color, in every other color set
there must be at least one color that has distance at least λ to color 2λ + 2.
This condition is not met yet for the sets with root color 2λ + 1 or root colors
2λ + 3, . . . , 3λ + 1. To satisfy the condition, we need λ extra colors that have
distance at least λ to color 2λ+2. The only available colors are colors 2, . . . , λ
and color λ + 2. This implies that none of the colors 2, . . . , λ can be in the
same set with color 2λ + 2, which is a contradiction.

The other two cases can be proven by the same argument.

Let k ≥ 2λ + 1. Suppose that there exists a λ-backbone coloring of (G,S)
with ` = 2k − bk

λc − 1 colors. Suppose that s2 = 0. Then there are only
monochromatic sets, i.e., s1 = k. By (4.2) the total number of colors needed
is at least (k − 1)λ + 1. However, the difference between this number and ` is

(k − 1)λ + 1 − (2k − bk
λc − 1) = k(λ − 2) + bk

λc − λ + 2 ≥ 2λ2 − 4λ + 2 > 0.
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Suppose that s2 > 0. Write k = aλ+r for some integers a ≥ 2 and 0 ≤ r ≤ λ−
1. By (4.1), s1 ≥ bk

λc+ 1 holds. Together with (4.2) this implies that we need

at least (bk
λc+1)(λ−1)+k colors. However, the difference between this number

and ` is (bk
λc+ 1)(λ− 1) + k− (2k−bk

λc− 1) = bk
λcλ + λ− k = λ− r > 0.

4.3 λ-Backbone coloring numbers of graphs with

matching backbones

In [46] we studied the case where λ ≥ 2 and the backbone is a perfect match-
ing. We determine all values Mλ(k) and observe that they roughly grow like
(2 − 2

λ+1)k. Their precise behavior is summarized in the following theorem.

Theorem 4.3.1. For k ≥ 2 the function Mλ(k) takes the following values:

(a) for 2 ≤ k ≤ λ: Mλ(k) = λ + k − 1;

(b) for λ + 1 ≤ k ≤ 2λ: Mλ(k) = 2k − 2;

(c) for k = 2λ + 1: Mλ(k) = 2k − 3;

(d) for k = t(λ + 1) with t ≥ 2: Mλ(k) = 2λ · t;

(e) for k = t(λ + 1) + c with t ≥ 2, 1 ≤ c < λ+3
2 : Mλ(k) = 2λ · t + 2c − 1;

(f) for k = t(λ + 1) + c with t ≥ 2, λ+3
2 ≤ c ≤ λ: Mλ(k) = 2λ · t + 2c − 2.

Proof. We divide the proof into two parts as follows.

Part 1 Proof of the upper bounds.
If k = 2 then G is bipartite, and we use colors 1 and λ+1. For k ≥ 3, let G =
(V,E) be a graph with χ(G) = k and let V1, . . . , Vk denote the corresponding
independent sets in a k-coloring. Let M = (V,EM ) be a matching backbone
of G. For a vertex v in G, we denote by mn(v) the only neighbor of v in M .

First, we will give upper bounds for Mλ(k) in case 3 ≤ k ≤ λ. Consider the
following color sets:
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• C1 = {1}

• Cj = {j, λ + j − 1} for j = 2, . . . , k − 1;

• Ck = {λ + k − 1}.

Note that these k color sets are pairwise disjoint. The union of these sets
consists of all the colors in {1, . . . , k − 1} together with all the colors in {λ +
1, . . . , λ + k − 1}. Moreover, the color of set C1 and the color of set Ck are at
distance λ + k − 2 ≥ λ. For 2 ≤ j ≤ k − 1 we have that the color of set C1

and the second color of set Cj are at distance λ + j − 2 ≥ λ, and that the first
color of set Cj and the color of set Ck are at distance λ + k − 1 − j ≥ λ. For
2 ≤ m < n ≤ k − 1, the first color of the set Cm and the second color of the
set Cn are at distance at least λ.

These properties enable us to construct a λ-backbone coloring of (G,M) such
that each set Vi gets a color from set Ci. Then vertices in V1 get color 1 and
vertices in Vk get color λ + k − 1. The choice for all other vertices depends on
the incidences with edges from M . Let v ∈ Vj (j = 2, . . . , k−1) and uv ∈ EM .

• if u ∈ V1: b(v) = λ + j − 1;

• if u ∈ Vk: b(v) = j;

• if u ∈ Vm (1 < m < j): b(v) = λ + j − 1;

• if u ∈ Vn (j < n < k): b(v) = j.

For the case λ + 1 ≤ k ≤ 2λ we use color sets:

• C1 = {1};

• Cj = {j, k + j − 2} for j = 2, . . . , k − 1;

• Ck = {2k − 2}.

By the same arguments as in the first case we can construct a λ-backbone
coloring using at most 2k − 2 colors.

For the case k = 2λ + 1 we use color sets:

• Ci = {i · λ + 1} for i = 0, . . . , 3;
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• C1,j = {j, 2λ + j} for j = 2, . . . , λ;

• C2,j = {λ + j, 3λ + j} for j = 2, . . . , λ − 1 and λ ≥ 3.

These k color sets are pairwise disjoint. The union of these sets is equal to
{1, . . . , 4λ − 1}\{2λ}.

We construct a λ-backbone coloring of (G,M) that for i = 0, . . . , 3 assigns
the color of set Ci to the vertices in Vi+1. This does not give any conflict,
since the colors of the sets Ci have distance at least λ to each other. For
j = 2, . . . , λ vertices in Vj+3 are assigned a suitable color from set C1,j, and
for j = 2, . . . λ − 1 vertices in Vλ+j+2 are assigned a suitable color from set
C2,j. Since colors within a set C1,j and within a set C2,j are at distance 2λ,
we can color the vertices in Vj+3 (j = 2, . . . , 2λ − 2) greedily and in arbitrary
order (cf. the proof of the upper bounds in Theorem 4.2.1).

The remaining cases follow by simple modifications of arguments that have
been used for case k = 2λ + 1.

For k = t(λ + 1) with t ≥ 2 we use color sets:

• Ci = {i · λ + 1} for i = 0, . . . , 2t − 1;

• Ci,j = {i · λ + j, (t + i)λ + j} for i = 0, . . . , t − 1 and j = 2, . . . , λ.

For k = t(λ + 1) + c with t ≥ 2, 1 ≤ c < λ+3
2 we use color sets:

• Ci = {i · λ + 1} for i = 0, . . . , 2t;

• C0,j = {j, 2t · λ + 2j − 2} for j = 2, . . . , c and c ≥ 2;

• C0,j = {j, t · λ + j} for j = c + 1, . . . , λ and c < λ;

• Ci,j = {i · λ + j, (t + i)λ + j} for i = 1, . . . , t − 1 and j = 2, . . . , λ;

• Ct,j = {t · λ + j, 2t · λ + 2j − 1} for j = 2, . . . , c and c ≥ 2.

For k = t(λ + 1) + c with t ≥ 2, λ+3
2 ≤ c ≤ λ we use color sets:

• Ci = {i · λ + 1} for i = 0, . . . , 2t;

• C2t+1 = {2t · λ + 2c − 2};
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• C0,j = {j, 2t · λ + 2j − 2} for j = 2, . . . , c − 1;

• C0,j = {j, t · λ + j} for j = c, . . . , λ;

• Ci,j = {i · λ + j, (t + i)λ + j} for i = 1, . . . , t − 1 and j = 2, . . . , λ;

• Ct,j = {t · λ + j, 2t · λ + 2j − 1} for j = 2, . . . , c − 1.

Part 2 Proof of the lower bounds.
Let λ ≥ 2. The case k = 2 is trivial. For k ≥ 3, we consider a complete
k-partite graph G that consists of k independent sets V1, . . . , Vk that are all
of cardinality k− 1. For 1 ≤ i ≤ k, let {vi,j | 1 ≤ j ≤ k, j 6= i} be the vertices
of Vi, and let M be a matching backbone of G such that EM = {vi,jvj,i | 1 ≤
i < j ≤ k}.

Consider some fixed λ-backbone `-coloring of (G,M). Since G is complete
k-partite, any color that shows up in some set Vi can not show up in any Vj

with j 6= i. Again we denote by Ci the set of colors that are used on vertices in
Vi. Recall that a set Vi is called monochromatic if |Ci| = 1, and polychromatic
if |Ci| ≥ 2. Again we denote by s1 and s2 the number of monochromatic and
polychromatic sets, respectively. Let m ≤ ` be the number of different colors
used on V . Then we immediately have s1 + s2 = k and s1 +2s2 ≤ m implying

s1 ≥ 2k − m. (4.3)

Since there exists a matching edge between any two independent sets Vi and
Vj , we obtain the following observations.

Observation 4.3.2. If x is a color used on a monochromatic set, then there
are at least k − 1 other colors that have distance at least λ to x.

Observation 4.3.3. If color x is assigned to monochromatic set Vi, and color
y is assigned to monochromatic set Vj , then the distance between x and y is
at least λ.

The last observation yields ` ≥ λ(s1 − 1) + 1. Together with (4.3) and m ≤ `
this implies that

` ≥
2λ · k

λ + 1
−

λ − 1

λ + 1
. (4.4)

Using a similar argumentation as in the proof of Lemma 4.2.5 we can prove
the following lemma. We omit the details.
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Lemma 4.3.4. If ` ≤ k+2λ−3 then only colors from A = {1, . . . , `−k−λ+2}
and B = {k + λ − 1, . . . , `} can be assigned to monochromatic sets.

We will prove the lower bounds.

In case k = t(λ + 1) with t ≥ 1 inequality (4.4) yields ` ≥ 2t · λ − λ−1
λ+1 =

2t · λ − 1 + 2
λ+1 . Since ` is an integer, this implies ` ≥ 2t · λ. The cases

k = t(λ + 1) + c with t ≥ 2 and 1 ≤ c ≤ λ follow by the same argument.

Let 3 ≤ k ≤ λ. Suppose that (G,M) has a λ-backbone coloring with ` =
λ + k − 2 colors. By Lemma 4.3.4, s1 = 0 holds. Colors k − 1, . . . , λ can not
be used at all, since there is no color in {1, . . . , λ + k − 2} that has distance
at least λ to one of them. So we can only use colors in {1, . . . , k − 2} and
{λ + 1, . . . , λ + k − 2}. Then the total number m of different colors is at most
2(k − 2). Hence, by (4.3) we find that s1 > 0.

Let λ + 2 ≤ k ≤ 2λ. Suppose that (G,M) has a λ-backbone coloring with
` = 2k−3 colors. By (4.3), s1 ≥ 3 holds. By Lemma 4.3.4, only monochromatic
colors in A = {1, . . . , k − λ− 1} and B = {k + λ− 1, . . . , 2k − 3} can be used.
Both sets have k−λ−1 ≤ λ−1 elements. Then by Observation 4.3.3 at most
one color in A and at most one color in B can be used for monochromatic sets.
Hence we find s1 ≤ 2.

The case k = 2λ + 1 can be proven analogously to the previous case.

4.4 λ-Backbone coloring numbers of planar graphs

with matching backbones

There are many open problems about backbone colorings. We refer to [7]
for details. In this section we only focus on some open problems for planar
graphs. The Four-Color Theorem together with Theorem 4.3.1 implies that
bbc2(G,M) ≤ 6 holds for any planar graph G with a matching backbone
M . It seems likely that this bound 6 is not best possible. However, the
planar graph G1 with the indicated matching backbone M consisting of edges
ab′, bc′, cd′, da′ as in Figure 4.1 shows that one can not improve this bound to
4.
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We prove here that we can not find a backbone coloring of (G1,M) with color
set {1, 2, 3, 4}. First of all observe that G1 can be obtained from a plane
embedding of the K4 induced by the vertices a, b, c, d, by putting a new vertex
in each face and adding edges from this new vertex to the three vertices on
the boundary of the face, and assigning the label x′ to the new vertex in the
triangular face bounded by the cycle uvwu, where {u, v,w, x} = {a, b, c, d}.
Suppose that we only use colors 1, 2, 3, 4, it is clear from this construction that
a, b, c and d get different colors, and that the colors of a vertex and its primed
counterpart are the same. Without loss of generality assume that a and a′ get
color 2. Then both b′ and d must get color 4, a contradiction. It is routine to
check that bbc2(G1,M) = 5.
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Figure 4.1: A graph G1 with a matching backbone M such that bbc(G1,M) =
5.

The following problems are still open.

Problem 4.4.1. Is bbc2(G,M) ≤ 5 for any planar graph G with a matching
backbone M?

Problem 4.4.2. How to prove bbc2(G,M) ≤ 6 without using the Four-Color
Theorem?

Now we recall a special kind of 2-backbone coloring, and prove a sharp result
with respect to the upper bound on the number of colors needed to color planar
graphs. Let H = (V,EH ) be a backbone of graph G = (V,EG). A 2-backbone
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coloring f : V → {1, . . . , `} of (G,H) is called an `-cyclic 2-backbone coloring
of (G,H), if no edge in EH connects two vertices with color 1 and color ` in
V . In a 2-backbone coloring we say that two colors x and y are adjacent if
|x − y| ≤ 1. In an `-cyclic 2-backbone coloring we also say that color 1 and
color ` are adjacent.

For the proof of Theorem 4.4.4 below we first construct the following useful
gadget.

Lemma 4.4.3. Let H be a graph with the matching M consisting of edges
ab, cd, eu, fg and hi as in Figure 4.2(a). Let G be a graph with a matching
backbone M ′. If H ⊂ G and M ⊂ M ′, then vertex u and vertex v can not be
colored with two adjacent colors in a 5-cyclic 2-backbone coloring of (G,M ′).
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Figure 4.2: (a) A graph H with matching M (b) A planar graph G2

Proof. Suppose that vertex u and vertex v can be colored with two adjacent
colors in a 5-cyclic 2-backbone coloring of (G,M ′). Since we use a 5-cyclic
2-backbone coloring, we can without loss of generality assume that vertex u is
colored with color 1 and vertex v is colored with color 2. This leaves us with
three possible colors for vertex d, i.e., color 3, color 4 or color 5.
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• If vertex d is colored with color 3, then vertex e must get color 4. Con-
tinuing this way, vertex f gets color 5, vertex g gets color 3 and vertex
h gets color 4. Since there is no feasible color for vertex i, this implies a
contradiction.

• If vertex d is colored with color 4, then vertex e gets color 3, vertex f
gets color 5, vertex g gets color 3 and vertex h gets color 4. Again, we
find a contradiction, since there is no feasible color for vertex i.

• If vertex d is colored with color 5, then vertex c must get color 3 and
the only feasible color for vertex b is color 4. We get a contradiction,
since there is no feasible color for vertex a. This completes the proof of
Lemma 4.4.3.

Theorem 4.4.4.

(a) Let G be a planar graph with a matching backbone M . Then (G,M) has
a 6-cyclic 2-backbone coloring.

(b) There exist planar graphs that do not have a 5-cyclic 2-backbone coloring
where the backbone is a perfect matching.

Proof. (a) By the Four-Color Theorem, we obtain that the chromatic number
of a planar graph G is at most 4. We can construct a 6-cyclic 2-backbone
coloring b of (G,M) by replacing the colors of a 4-coloring c of G as follows:

• if c(v) = 1: b(v) = 1;

• if c(v) = 2: b(v) = 3;

• if c(v) = 3: b(v) = 5;

• if c(v) = 4 and c(mn(v)) = 1: b(v) = 4;

• if c(v) = 4 and c(mn(v)) = 2: b(v) = 6;

• if c(v) = 4 and c(mn(v)) = 3: b(v) = 2.
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(b) We construct a planar graph G2 as follows. First we make three copies
(H1,M1), (H2,M2), (H3,M3) of the pair (H,M) from Figure 4.2(a), and glue
them together at vertex v. Then we add one new vertex w and four new edges,
i.e., the edge vw and the edges u1u2, u2u3, u3u1 (see Figure 4.2(b)). Let M ′

be a matching backbone of G2 that contains all matchings Mi (i = 1, 2, 3) and
the edge vw.

Suppose that there exists a 5-cyclic 2-backbone coloring of (G2,M
′). Without

loss of generality we may assume that vertex v is colored with color 1. Then,
by Lemma 4.4.3, vertices u1, u2 and u3 must all be colored with either color 3
or color 4. On the other hand, the vertices u1, u2 and u3 can not be colored
with colors 1, 2 and 5. On the other hand, vertices u1, u2 and u3 must all
get different colors, since they induce a K3. This contradiction completes the
proof of Theorem 4.4.4.

4.5 λ-Backbone coloring numbers of split graphs

We recall that a split graph is a graph whose vertex set can be partitioned
into a clique (i.e. a set of mutually adjacent vertices) and an independent set
(i.e. a set of mutually nonadjacent vertices), with possibly edges in between.
The size of a largest clique in G and the size of a largest independent set in G
are denoted by ω(G) and α(G), respectively. Split graphs were introduced by
Hammer & Földes [26]; see also the book [21] by Golumbic.

In this section we discuss the special case of λ-backbone colorings of split
graphs with star backbones or matching backbones or tree backbones. The
motivation for looking at split graphs is threefold. First of all, split graphs
have nice structural properties. They form an interesting subclass of the class
of perfect graphs. Hence, split graphs satisfy χ(G) = ω(G). Secondly, every
graph can be turned into a split graph by considering any (e.g. a maximum)
independent set and turning the remaining vertices into a clique. Thirdly, the
number of colors needed to color the resulting split graph is an upper bound
for the number of colors one needs to color the original graph. It will become
clear from the results below that split graphs indeed serve us very well in this
specific context, since they can provide considerably lower upper bounds on
the numbers of colors we need than earlier results.
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4.5.1 Star backbones of split graphs

In this subsection we present sharp upper bounds for the λ-backbone coloring
numbers of split graphs with star backbones. The following theorem is a
strengthening of Theorem 4.2.1 for the special case of split graphs.

Theorem 4.5.1. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) =
k ≥ 2. For every star backbone S = (V,ES) of G,

bbcλ(G,S) ≤

{

k + λ if either k = 3 and λ ≥ 2 or k ≥ 4 and λ = 2
k + λ − 1 in the other cases.

The bounds are tight.

Proof. We divide the proof into two parts as follows.

Part 1 Proof of the upper bounds.
Let G = (V,E) be a split graph with a star backbone S = (V,ES). Let C and
I be a partition of V such that C with |C| = k is a clique of maximum size,
and such that I is an independent set. Then χ(G) = ω(G) = k. Let rC and
rI be the number of roots in C and the number of roots in I, respectively. We
define the root of any S1 ∈ S as the end vertex in C.

First, we consider the case that either k = 3 and λ ≥ 2 or k ≥ 4 and λ = 2. If
rC = 1 and rI = 0, then color the root with color 1; color the other vertices
in C with colors 1 + λ, . . . , k + λ − 1; color all vertices in I with color k + λ.
If rC 6= 1 or rI ≥ 1, then let p be the number of leaves in C of the roots in
I. Color the roots in C with colors 1, . . . , rC . Color all the leaves in C of the
roots in I with colors rC + 1, . . . , rC + p. Color the other vertices in C with
colors λ + rC + p, . . . , k + λ − 1. Color all vertices in I with color k + λ. This
results in a λ-backbone coloring with colors from {1, . . . , χ(G) + λ}.

Next, for k = 2 and λ ≥ 2 color the two vertices in C with colors 1 and λ + 1.
Color every vertex u ∈ I with color λ + 1 if u is a leaf of a star with 1 as its
root color, and color every vertex u ∈ I with color 1 if u is a leaf of a star with
λ + 1 as its root color. This results in a λ-backbone coloring with colors from
{1, . . . , χ(G) + λ − 1}.

Finally, for k ≥ 4 and λ ≥ 3, we distinguish nine cases which are based on
the number and the location of the roots, and we indicate how a suitable
λ-backbone coloring is obtained.

Case 1 rC = 0.
Let w be the number of leaves of a root that has the largest number of leaves.
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Color the leaves of one root that has w leaves with colors 2, . . . , w + 1, and
color their root with color k +λ− 1. Color the other roots with color 1. Color
the other vertices in C with colors w + λ − 1, . . . , k + λ − 2.

Case 2 rC = 1 and either rI = 0 or rI = 1 and all leaves of the root in C are
in I.
Color each root with color k + λ− 1. Note that in case rC = 1 and rI = 1 the
roots are nonadjacent since |C| is maximum and all other vertices of C are
leaves of the root in I. Color the k − 1 leaves in C with colors 1, . . . , k − 1.
Each leaf u ∈ I is colored with min{color of v|v ∈ C, uv /∈ E}.

Case 3 rC = 1, rI = 1 and the root in C has at least one leaf in C.
Color the root in C with color 1. Let t be the number of leaves in C of the
root in C. Color the t leaves in C of the root in C with colors λ + k − t −
1, . . . , λ + k − 2. Color the k − t − 1 leaves in C of the root in I with colors
2, . . . , k − t. Color all vertices in I with color λ + k − 1.

Case 4 rC = 1 and rI ≥ 2.
Color the root in C with color 2. Let w be the number of leaves of a root
in I which has the largest number of leaves. Color all the leaves of one root
in I which has w leaves with colors k + λ − 1 − w, . . . , k + λ − 2, and color
the root with color 1. Let x be the number of leaves in C who have their
roots in C. Color the leaves in C who have their roots in C with colors
k + λ− 1−w− x, . . . , k + λ− 2−w. Color the other vertices in C with colors
3, . . . , k + 1 − w − x. Color all other vertices in I with color k + λ − 1.

Case 5 rC = 2 and rI = 0.
Color a root which has the largest number of leaves in C with color 1, and the
other root with color 2. Use color λ+1 for one leaf in C of the root with color
1. Color the k − 3 other leaves in C with colors λ + 2, . . . , λ + k − 2. Color all
leaves in I with color λ + k − 1.

Case 6 rC = 2 and rI ≥ 1.
Color the two roots in C with colors 2 and 3. Let w be the number of leaves of
a root in I which has the largest number of leaves. Color all the leaves of one
root in I which has w leaves with colors λ+1, . . . , λ+w, and color the root with
color 1. Let x be the number of leaves in C who have their roots in C. Color
all the leaves in C who have their roots in C with colors λ+w+1, . . . , λ+w+x.
Color the other vertices in C with colors 4, . . . , k + 1− w − x. Color all other
vertices in I with color k + λ − 1.
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Case 7 3 ≤ rC ≤ k − 2 for k ≥ 5.
Color all roots in I with color 1. Color the rC roots in C with colors 2, . . . , rC +
1 consecutively based on the number of their leaves in C from the largest one to
the smallest one. Color the k−rC leaves in C with colors rC+λ−1, . . . , k+λ−2
consecutively based on the color of their root from the smallest one to the
largest one. Color all leaves in I with color λ + k − 1.

Case 8 rC = k − 1.
Then rI = 0. Color one root and its leaf in C with colors 2 and k + λ − 2,
respectively. Color the k − 2 other roots in C with colors 3, . . . , k − 1 and
k + λ− 3. Color the leaves in I which have the root with color k + λ− 3 with
color 1. Color the other leaves in I with color k + λ − 1.

Case 9 rC = k.
Then rI = 0. Color the k roots with colors 2, . . . , k − 1, k + λ − 3, k + λ − 2.
Color all leaves in I whose root has color k + λ − 3 or k + λ − 2 with color 1.
Color the other leaves in I with color k + λ − 1.

Part 2 Proof of the tightness of the bounds.
For the case k = 3 and λ ≥ 2 and the case k ≥ 4 and λ = 2 we consider
a split graph G = (V,E) with a clique of k vertices v1, . . . , vk and with an
independent set of k(k − 1) vertices ui,j with 1 ≤ i ≤ k, 1 ≤ j ≤ k and i 6= j.
Every vertex ui,j is adjacent to all vertices vs with s 6= j. The star backbone
S contains the k(k − 1) edges ui,jvi with 1 ≤ i ≤ k, 1 ≤ j ≤ k and i 6= j. So,
all vertices in the clique are all the roots of S. Clearly, χ(G) = k. Suppose
to the contrary that bbcλ(G,S) ≤ k + λ − 1, and consider such a backbone
coloring. The vertices v1, . . . , vk in the clique must be colored with k pairwise
distinct colors such that every color has at least one other color at distance λ.

For the case k = 3 and λ ≥ 2 we only have four colors that are possible to
be used for the three roots in the clique, i.e. 1, 2, λ + 1, λ + 2. Hence, there
are four choices to color the clique. But by symmetry, we only have to check
two of them. The first case is that we use colors 1, 2, λ + 1 for the vertices in
the clique. All leaves of the root with color λ + 1 must be colored with color
1. We find a contradiction, since there is one leaf of the root with color λ + 1
that is adjacent in G with the root with color 1. The second case is that we
use colors 1, 2, λ + 2 for the vertices in the clique. All leaves of the root with
color 2 must be colored with color λ + 2. We find a contradiction, since there
is a leaf of the root with color 2 that is adjacent in G with the root with color
λ + 2.

Next, we consider the case k ≥ 4 and λ = 2. Suppose that we use colors from
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{1, . . . , k + 1} \ {i} for some i = k or k + 1 for the k vertices in the clique. Let
vl and vm be the roots with color i− 1 and color i− 2, respectively. Each leaf
of the root vl must be colored with one of the k − 2 colors in {1, . . . , k + 1} \
{i, i− 1, i− 2}. Since ul,mvs ∈ E for s = 1, . . . , k and s 6= m, we can not color
the vertex ul,m. We find a contradiction. A similar argument can be used for
the other possibilities. Suppose that we use colors from {1, . . . , k + 1} \ {i}
for some i = 1, . . . , k − 1 for the k vertices in the clique. Let vy and vz be the
roots with color i + 1 and color i + 2, respectively. Each leaf of the root vy

must be colored with one of the k− 2 colors in {1, . . . , k + 1} \ {i, i + 1, i + 2}.
Since uy,zvs ∈ E for s = 1, . . . , k and s 6= z, we can not color the vertex uy,z.
We find a contradiction.

For the remaining case we consider a complete graph G with k vertices v1, . . . ,
vk. The star backbone S contains the k − 1 edges vkvs with 1 ≤ s ≤ k − 1.
Clearly, χ(G) = k. Since the vertices v1, . . . , vk are in the clique and since the
vertices v1, . . . , vk−1 are the leaves of the root vk, we need at least k − 1 + λ
colors in a λ-backbone coloring of (G,S).

4.5.2 Matching backbones of split graphs

In this subsection we present sharp upper bounds for the λ-backbone coloring
numbers of split graphs with matching backbones in Theorem 4.5.4. It is a
strengthening of Theorem 4.3.1 for the special case of split graphs. Before
we present the complete results about it, we introduce the notion of matching
neighbor, nonneighbor and splitting set in a split graph with a matching back-
bone, and we prove two technical lemmas (Lemma 4.5.2 and Lemma 4.5.3).

Given a split graph G = (V,E) with a matching backbone M = (V,EM ). A
vertex u ∈ V is called a matching neighbor of vertex v ∈ V if (u, v) ∈ EM ,
denoted by u = mn(v). Let C be the largest clique of G and let I be the
largest independent set of G. A set of nonneighbors of an element u ∈ C is
defined as the set of vertices v ∈ I for which (u, v) /∈ E. Similarly, a set of
nonneighbors of an element v ∈ I is defined as the set of vertices u ∈ C for
which (v, u) /∈ E. The set of nonneighbors of a vertex u is denoted by nn(u).
Note that every vertex in I has at least one nonneighbor. However, for a
vertex u ∈ C, the set nn(u) may be empty. For some p ≤ α(G) a splitting set
of cardinality p, named an s-set for short, is defined as a set {v1, . . . , vp} ⊆ I
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such that






⋃

i=1,...,p

nn(vi)







⋂







⋃

i=1,...,p

mn(vi)







= ∅.

Note that if (G,M) has an s-set of cardinality p, then it also has an s-set of
cardinality q for all q ≤ p.

Lemma 4.5.2. Given a split graph G = (V,E) with a matching backbone
M = (V,EM ). Let k′ be the cardinality of a clique C ′ in G and let i′ be the
cardinality of an independent set I ′ in G. If i′ = k′, every vertex in I ′ has at
most one nonneighbor in C ′ and has exactly one matching neighbor in C ′, and
dk′

3 e ≥ x, then (G,M) has an s-set of cardinality x that is a subset of I ′.

Proof. We split C ′ and I ′ up in C ′
1, C

′
2, I

′
1 and I ′2 with cardinality c′1, c

′
2, i

′
1 and

i′2, respectively, in the following way.

• C ′
1 consists of all the vertices in C ′ that either have no nonneighbors in I ′

or have at least two nonneighbors in I ′ or have exactly one nonneighbor
in I ′, whose matching neighbor in C ′ has no nonneighbors in I ′.

• C ′
2 consists of all other vertices in C ′. Obviously, they all have exactly

one nonneighbor in I ′.

• I ′1 consists of the matching neighbors of the vertices in C ′
1.

• I ′2 consists of the matching neighbors of the vertices in C ′
2.

Clearly, i′1 = c′1 and i′2 = c′2. Now assume that there are ` vertices in C ′
1 that

have no nonneighbors in I ′ and put them in set L. Also assume that there
are q vertices in C ′

1 that have at least two nonneighbors in I ′ and put them in
set Q. Finally, assume that there are n vertices in C ′

1 that have exactly one
nonneighbor in I ′, whose matching neighbor has no nonneighbors in I ′ and
put them in set N . Then ` ≥ q, ` ≥ n and c′1 = ` + q + n, so c′1 ≤ 3`.

Let L′, Q′ and N ′ be the sets of matching neighbors of the vertices in L, Q
and N , respectively. We pick from I ′1 the ` vertices in L′ and put them in
the s-set. Notice that these vertices do not violate the definition of an s-set,
because the set of their nonneighbors and the set of their matching neighbors
are two disjoint sets. The matching neighbors of the nonneighbors of the `
vertices in the s-set are either in Q′ or in N ′, so we exclude the vertices in
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these two sets for use in the s-set. On the other hand, the matching neighbors
of the ` vertices in the s-set do not have nonneighbors, so we do not have to
worry about them. From the observations above it is clear that we can pick

l ≥ d
c′
1

3 e = d
i′
1

3 e vertices from I ′1 that can be used in the s-set. Moreover,
any vertices from I ′2 that are put in the s-set do not conflict with the vertices
from L′ that are in the s-set already. So the only thing we have to do now is

to pick at least d
i′
2

3 e vertices from I ′2 that can be used in the s-set. We have
to verify again that these vertices do not violate the definition of the s-set.
Pick an arbitrary vertex from I ′2 and put it in the s-set. Now delete from I ′2
the matching neighbor of its nonneighbor and the unique nonneighbor of its
matching neighbor if they happen to be in I ′2. Continuing this way, we lose at
most two vertices of I ′2 for every vertex of I ′2 that we put in the s-set. So we

can pick at least d
i′
2

3 e vertices from I ′2 that we can put in the s-set. Therefore,

the cardinality of the s-set is at least d
i′
1

3 e + d
i′
2

3 e ≥ d i′

3 e = dk′

3 e ≥ x, which
proves the lemma.

Lemma 4.5.3. Given a split graph G = (V,E) with a matching backbone
M = (V,EM ). Let k = ω(G) be the cardinality of the largest clique C in G
and let i = α(G) be the cardinality of the largest independent set I in G. If
every vertex in I has exactly one nonneighbor in C and dk

3e ≥ x, then (G,M)

has an s-set S with |S| = x− k−i
2 such that there are no matching edges between

the nonneighbors of vertices of S.

Proof. To prove this lemma, we first define three disjoint subsets of C.

• C1 consists of the i vertices of C that have a matching neighbor in I.

• C2 contains for each matching edge in C for which both vertices have
at least one nonneighbor in I, the vertex with the fewest nonneighbors
in I. If both vertices have the same number of nonneighbors in I, then
any one vertex will be in C2.

• C3 contains for each matching edge in C for which both vertices have at
least one nonneighbor in I, the vertex that is not in C2.

Let m be the sum of the number of nonneighbors of the vertices in C2 and let
n be the sum of the number of nonneighbors of vertices in C3. Then clearly,
n ≥ m and there are at least m+n vertices in C1 that have no nonneighbors in
I. We give a partition of I into four sets, I1, . . . , I4 and we show that one can
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pick n vertices from I2 and at least x− k−i
2 − n vertices from I4 that together

will form the s-set.

• I1 consists of all the nonneighbors of the vertices in C2.

• I2 consists of the matching neighbors of n vertices in C1 that have no
nonneighbors in I and whose matching neighbors are not already in I1.

• I3 consists of the matching neighbors of the nonneighbors of the elements
of I2, that are in I, but not in I1.

• I4 consists of the other vertices of I.

Let i1, i2, i3 and i4 be the cardinality of I1, I2, I3 and I4, respectively. It is
easily verified that i1 = m, i2 = n, i3 ≤ n and i4 ≥ i − (2n + m). Now we
put all the vertices of I2 in the s-set and leave all the vertices of I1 and I3 out
of the s-set. Since the vertices of I1 are not in the s-set, there are no matching
edges between the nonneighbors of vertices in the s-set. Since the matching
neighbors of the vertices that are now in the s-set have no nonneighbors, and
the matching neighbors of the nonneighbors of the vertices in the s-set are
not in I4, vertices from I4 that will be added to the s-set do not conflict with
vertices from I2 that are already there. Now consider the set I4 and the set C4

of its matching neighbors in C as an independent set and a clique of the graph
G with the matching backbone M . Clearly, every vertex in I4 has at most
one nonneighbor in C4 and exactly one matching neighbor in C4. Moreover,
if c4 is the cardinality of the clique C4, then i4 = c4 and d c4

3 e = d i4
3 e ≥

dk−(k−i)−(2n+m)
3 e ≥ dk

3e − dk−i
3 e − d2n+m

3 e ≥ x − dk−i
2 e − n = x − k−i

2 − n.

Thus, by Lemma 4.5.2, (G,M) has an s-set of cardinality x − k−i
2 − n that is

a subset of I4. Therefore, we can add these x − k−i
2 − n vertices from I4 to

the s-set of (G,M). Together with the n vertices from I2 that were already in
there, we obtain that (G,M) has an s-set of cardinality x− k−i

2 such that there
are no matching edges between the nonneighbors of vertices of the s-set.

Theorem 4.5.4. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) =
k ≥ 2. For every matching backbone M = (V,EM ) of G,

bbcλ(G,M) ≤























λ + 1 if k = 2

k + 1 if k ≥ 3 and λ ≤ min{k
2 , k+5

3 }
k + 2 if k = 9 or k ≥ 11 and k+6

3 ≤ λ ≤ dk
2e

dk
2e + λ if k = 3, 5, 7 and λ ≥ dk

2e
dk

2e + λ + 1 if k = 4, 6 or k ≥ 8 and λ ≥ dk
2e + 1.
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The bounds are tight.

Proof. First of all, note that for technical reasons we split up the proof in more
and different subcases than there appear in the formulation of the theorem.
We divide the proof into two parts as follows.

Part 1 Proof of the upper bounds.
If k = 2, then G is bipartite, and we use colors 1 and λ + 1. For k ≥ 3, let
G = (V,E) be a split graph with χ(G) = k and with a matching backbone
M = (V,EM ). Let C and I be a partition of V such that C with |C| = k is
a clique of maximum size, and such that I with |I| = i is an independent set.
Without loss of generality, we assume that every vertex in I has exactly one
nonneighbor in C.

First, we consider the case k = 4, 6, 8, 10 and λ ≤ k
2 , the case k = 2m, m ≥ 6

and λ ≤ k+5
3 , and the case k = 2m + 1, m ≥ 1 and λ ≤ k+5

3 . For these cases

we obtain k ≥ 2λ − 1 and dk
3e ≥ λ− 1. By Lemma 4.5.3, we find that (G,M)

has an s-set of cardinality y = λ − 1 − k−i
2 such that there are no matching

edges between the nonneighbors of vertices of the s-set. We make a partition
of C into six disjoint sets, C1, . . . , C6, with cardinality c1, . . . , c6, respectively.

• C1 consists of those vertices in C that have a matching neighbor in C
and a nonneighbor in the s-set. Notice that, by definition of the s-set,
there are no matching edges between vertices in C1.

• C2 consists of those vertices in C that have a matching neighbor in I
and a nonneighbor in the s-set.

• C3 contains one vertex of each matching edge in C that has no vertex in
C1.

• C4 consists of those vertices in C whose matching neighbor is in I and
that are neither matching neighbor nor nonneighbor of any vertex in the
s-set.

• C5 consists of those vertices in C that have a matching neighbor in the
s-set.

• C6 consists of those vertices in C that have a matching neighbor in C
and that are not already in C1 or C3.
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It is easily verified that

c1 + c2 ≤ y, c3 = k−i
2 − c1, c4 = i − y − c2,

c5 = y, c6 = k−i
2 ,

∑6
i=1 ci = k.

An algorithm that constructs a feasible λ-backbone coloring of (G,M) with
at most k + 1 colors is given on the next page. In this algorithm and later on,
I ′′ denotes the set consisting of the vertices of I that are not in the s-set.

Coloring Algorithm 1

1 Color the vertices in C1 with colors from the set {1, . . . , c1}.

2 Color the vertices in C2 with colors from the set {c1 + 1, . . . , c1 + c2}.

3 Color the vertices in the s-set by assigning to them the same colors as
their nonneighbors in C1 or C2. Note that different vertices in the s-set
can have the same nonneighbor in C1 or C2, so a color may occur more
than once in the s-set.

4 Color the vertices in C3 with colors from the set {c1 + c2 + 1, . . . , c1 +
c2 + c3}.

5 Color the vertices in C4 with colors from the set {c1+c2 +c3+1, . . . , c1 +
c2 + c3 + c4}.

6 Color the vertices in C5 with colors from the set {c1 + c2 + c3 + c4 +
1, . . . , c1+c2+c3+c4+c5}; start with assigning the lowest color from this
set to the matching neighbor of the vertex in the s-set with the lowest
color and continue this way.

7 Color the vertices in C6 with colors from the set {c1 + c2 + c3 + c4 + c5 +
1, . . . , c1 + c2 + c3 + c4 + c5 + c6}; start with assigning the lowest color
from this set to the matching neighbor with the lowest color in C1 ∪ C3

and continue this way.

8 Finally, color the vertices of I ′′ with color k + 1.

It is clear that all the vertices in C get different colors, and that vertices in
I either get a color that does not occur in C or get the same color as their
nonneighbor in C. There are three types of matching edges for which we have
to verify that the distance between the colors of their vertices is at least λ:
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1. Matching edges in C. They have one vertex in C1 ∪ C3 and the other
vertex in C6. It is easy to see that the smallest distance between two
colors here occurs for the matching edges that have one vertex in C3 and
the other vertex in C6. This distance is c4 + c5 + c6 = i − c2 + k−i

2 ≥

i − y + k−i
2 = i − λ + 1 + k−i

2 + k−i
2 = k − λ + 1 ≥ 2λ − 1 − λ + 1 = λ.

2. Matching edges between the s-set and C. These are exactly y matching
edges. They have one vertex in the s-set and the other vertex in C5, so
one vertex gets a color from the set {1, . . . , c1 + c2} and the other vertex
gets a color from the set {c1 + c2 + c3 + c4 +1, . . . , c1 + c2 + c3 + c4 + c5}.
This last set contains exactly y colors, but the first set may contain fewer
than y colors, so some of the colors of the first set may be used more than
once in the s-set. However, it is not hard to see that the smallest distance
between two colors here occurs for the matching edge with colors 1 and
c1+c2+c3+c4+1. This distance is equal to c1+c2+c3+c4 = k−c5−c6 =
k − y − k−i

2 = k − λ + 1 + k−i
2 − k−i

2 = k − λ + 1 ≥ 2λ − 1 − λ + 1 = λ.

3. Matching edges between I ′′ and C. They have one vertex in I ′′ and the
other vertex in C2∪C4. It is clear that the smallest distance between two
colors for a matching edge of this type is equal to k+1−c1−c2−c3−c4 =
c5 + c6 + 1 = y + k−i

2 + 1 = λ − 1 − k−i
2 + k−i

2 + 1 = λ.

It shows that the coloring provided by Coloring Algorithm 1 is a λ-backbone
coloring of (G,M) with colors from {1, . . . , k + 1}.

Next, we consider the case k = 2m, m ≥ 6 and k+6
3 ≤ λ ≤ k

2 . We obtain

k ≥ 2λ. We color the k vertices in C with colors from the sets {2, . . . , k
2 + 1}

and {k
2 + 2, . . . , k + 1}. If there are matching edges in C, then we assign the

first colors from both sets to the two vertices of the first matching edge, the
second colors from both sets to the two vertices of the second matching edge
and so on. We can color up the two vertices of k

2 matching edges in C this way
and this is the maximum number of matching edges in C. Vertices in I get
color k + 2 if their matching neighbor in C is colored by a color from the first
set, and vertices in I get color 1 if their matching neighbor in C is colored by
a color from the second set. This results in a λ-backbone coloring of (G,M)
with at most k + 2 colors.

We consider the case k = 2m + 1, m ≥ 4 and k+6
3 ≤ λ ≤ k+1

2 . We obtain k ≥
2λ−1. For this case we find that i is odd, otherwise there is no perfect matching
of G. If i = 1, then there are k−1

2 matching edges in C. We can color their

vertices with colors from the two sets {1, . . . , k−1
2 } and {k−1

2 + 3, . . . , k + 1},
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such that the first colors from both sets are assigned to the two vertices of
one matching edge, the second colors from both sets are assigned to the two
vertices of another matching edge and so on. The distance between two colors
of the two vertices in every matching edge in C is k−1

2 + 2 ≥ 2λ−2
2 + 2 = λ+ 1.

For the other vertex in C we use color k−1
2 + 1 and its matching neighbor in I

gets color k + 2. Note that k + 2− k−1
2 − 1 = k+3

2 ≥ 2λ+2
2 = λ + 1. If i is odd

and 3 ≤ i ≤ k, then there are k−i
2 matching edges in C. We can color their

vertices with colors from the two sets {2, . . . , k−i
2 +1} and {k+i

2 +2, . . . , k+1},
such that the first colors from both sets are assigned to the two vertices of one
matching edge, the second colors from both sets are assigned to the two vertices
of another matching edge and so on. The distance between two colors of the
two vertices in every matching edge in C is k+i

2 ≥ 2λ−1+i
2 ≥ 2λ+2

2 = λ+1. The

other i vertices in C are colored with colors from the sets {k−i
2 + 2, . . . , k

2 + 1}
and {λ + 1, . . . , i

2 + λ}, which are exactly i colors. Vertices in I get color
k + 2 if their matching neighbor in C is colored by a color from the first
set, or get color 1 if their matching neighbor in C is colored by a color from
the second set. Notice that k + 2 − k+3

2 = 2k+4−k−3
2 = k+1

2 ≥ 2λ
2 = λ and

k+3
2 +1−1 = k+3

2 ≥ 2λ+2
2 = λ+1, so all these matching edges have the required

distance of at least λ. This results in a λ-backbone coloring of (G,M) with at
most k + 2 colors.

Next, we consider the case k = 3, 5, 7 and λ ≥ k+6
3 . We obtain dk

3e ≥
k−1
2 . By

Lemma 4.5.3, we find that (G,M) has an s-set of cardinality z = k−1
2 − k−i

2 =
i−1
2 such that there are no matching edges between the nonneighbors of vertices

of the s-set. We have to construct a λ-backbone coloring of (G,M) with at
most k+1

2 +λ colors. Obviously, colors from the set {k+1
2 +1, . . . , λ} can not be

used at all. So we have to find a coloring with colors from the sets {1, . . . , k+1
2 }

and {λ + 1, . . . , k+1
2 + λ}. We split C up in 6 different sets in the way we did

this in the proof of the case k = 4, 6, 8, 10 and λ ≤ k
2 .

For the cardinality of these sets, we have the following relations:

c1 + c2 ≤ i−1
2 , c3 = k−i

2 − c1, c4 = i − i−1
2 − c2,

c5 = i−1
2 , c6 = k−i

2 ,
∑6

i=1 ci = k.

The following variation on Coloring Algorithm 1 constructs a feasible λ-back-
bone coloring of (G,M).

Coloring Algorithm 2

1 - 5 are the same as in Coloring Algorithm 1.
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6 Color the vertices in C5 with colors from the set {λ+1, . . . , λ+c5}; start
with assigning the lowest color from this set to the matching neighbor
of the vertex in the s-set with the lowest color and continue this way.

7 Color the vertices in C6 with colors from the set {λ+ c5 +1, . . . , λ+ c5 +
c6}; start with assigning the lowest color from this set to the matching
neighbor with the lowest color in C1 ∪ C3 and continue this way.

8 Finally, color the vertices in I ′′ with color k+1
2 + λ.

Again, it is clear that vertices in C all get different colors and that vertices
in I either get a color that does not occur in C or get the same color as their
nonneighbor in C. Also again, there are three types of matching edges for
which we have to verify that the distance between their vertices is at least λ:

1. Matching edges in C. They have one vertex in C1∪C3 and one vertex in
C6. It is easy to see that the smallest distance between two colors here
occurs for the matching edges that have one vertex in C3 and the other
vertex in C6. This distance is λ+ c5 + c6 − c1 − c2 − c3 = λ+ i−1

2 + k−i
2 −

k−i
2 − c2 ≥ λ + i−1

2 − i−1
2 = λ.

2. Matching edges between the s-set and C. These are exactly z = i−1
2

matching edges. They have one vertex in the s-set and the other vertex
in C5, so one vertex gets a color from the set {1, . . . , c1 + c2} and the
other vertex gets a color from the set {λ + 1, . . . , λ + c5}. This last
set contains exactly z colors, but the first set may contain fewer than
z colors, so some of the colors of the first set may be used more than
once in the s-set. However, it can be verified that the smallest distance
between two colors here occurs for the matching edge with colors 1 and
λ + 1. This distance is equal to λ.

3. Matching edges between I ′′ and C. They have one vertex in I ′′ and the
other vertex in C2 ∪ C4. It is clear that the smallest distance between
two colors for a matching edge of this type is equal to k+1

2 + λ − c1 −

c2 − c3 − c4 = k+1
2 + λ − k−i

2 − i + i−1
2 = λ + k+1−k+i−2i+i−1

2 = λ.

It shows that the coloring provided by Coloring Algorithm 2 is a λ-backbone
coloring of (G,M) with colors from {1, . . . , k+1

2 + λ}.

Next, we consider the case k = 2m, m ≥ 2 and λ ≥ k
2 + 1. For this case we

find that i is even, otherwise there is no perfect matching of G. If i = 0, then
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there are k
2 matching edges in C. We can use color pairs {1, λ + 1}, {2, λ +

2}, . . . , {k
2 , k

2 + λ} for their vertices, because λ + 1 > k
2 . If i is even and i ≥ 2,

then there are k−i
2 matching edges in C. We can color their vertices with colors

from the two sets {2, . . . , k−i
2 +1} and { i

2 +λ+1, . . . , k
2 +λ}, such that the first

colors from both sets are assigned to the two vertices of one matching edge,
the second colors from both sets are assigned to the two vertices of another
matching edge and so on. The distance between two colors of the two vertices
in every matching edge in C is i

2 + λ − 1 ≥ λ. The other i vertices in C are

colored with colors from the sets {k−i
2 + 2, . . . , k

2 + 1} and {λ + 1, . . . , i
2 + λ},

which are exactly i colors. The colors in this first set have distance at least
λ to color k

2 + λ + 1, so we color the matching neighbors in I of the vertices

in C that are colored with colors from this first set with color k
2 + λ + 1. The

colors in the second set have distance at least λ to color 1, so we color the
matching neighbors in I of the vertices in C that are colored with colors from
this second set with color 1. This results in a λ-backbone coloring of (G,M)
with at most k

2 + λ + 1 colors.

Finally, we consider the case k = 2m+1, m ≥ 4 and λ ≥ k+1
2 +1. For this case

we find that i is odd, otherwise there is no perfect matching of G. There are
k−i
2 matching edges in C. We can color their vertices with colors from the two

sets {2, . . . , k−i
2 +1} and { i+3

2 +λ, . . . , k+1
2 +λ}, such that the first colors from

both sets are assigned to the two vertices of one matching edge, the second
colors from both sets are assigned to the two vertices of another matching
edge and so on. Notice that i+3

2 + λ− k−i
2 − 1 = i+3+2λ−k+i−2

2 = 2i+1−k+2λ
2 ≥

2i+1−k+k+2
2 > 0, so that these sets have no overlap. The distance between two

colors of the two vertices in every matching edge in C is i−1
2 + λ ≥ λ. The

other i vertices in C are colored with colors from the sets {k−i
2 + 2, . . . , k+1

2 }
and {λ + 1, . . . , i+1

2 + λ}, which are exactly i colors that have not been used

yet. Vertices in I get color k+1
2 + λ + 1 if their matching neighbor in C is

colored by a color from the first set, or get color 1 if their matching neighbor
in C is colored by a color from the second set. This results in a λ-backbone
coloring of (G,M) with at most k+1

2 + λ + 1 colors.

Part 2 Proof of the tightness of the bounds.
The case k = 2 is trivial. For the case k = 4, 6, 8, 10 and λ ≤ k

2 , the case

k = 2m, m ≥ 6 and λ ≤ k+5
3 , the case k = 2m + 1, m ≥ 1 and λ ≤ k+5

3 , the

case k = 3, 5, 7 and λ ≥ k+6
3 , and the case k = 2m, m ≥ 2 and λ ≥ k

2 + 1
we consider a split graph G with a clique of k vertices v1, . . . , vk and with an
independent set of k vertices u1, . . . , uk. Every vertex ui with i = 1, . . . , k − 1
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is adjacent to all vertices vj with j = 1, . . . , k − 1. The vertex uk is adjacent
to all vertices vj with j = 2, . . . , k. The matching backbone M contains the k
edges uivi with i = 1, . . . , k.

Suppose to the contrary that bbcλ(G,M) ≤ k for either the case k = 4, 6, 8, 10
and λ ≤ k

2 , or the case k = 2m, m ≥ 6 and λ ≤ k+5
3 , or the case k = 2m + 1,

m ≥ 1 and λ ≤ k+5
3 . Then all k colors are used in the clique and the vertices

ui, with i = 1, . . . , k− 1, must get the same color as the color of vk. We find a
contradiction, since one color can be used at most k − λ ≤ k − 2 times in the
independent set.

Suppose to the contrary that bbcλ(G,M) ≤ k−1
2 + λ for the case k = 3, 5, 7

and λ ≥ k+6
3 . Then colors from the set {k−1

2 + 1, . . . , λ} can not be used at
all, since these colors have no other colors at a distance of at least λ within
the set {1, . . . , k−1

2 + λ}. Therefore, only the k − 1 other colors can be used.
We find a contradiction, since there is no way to color a clique of size k with
only k − 1 colors.

Suppose to the contrary that bbcλ(G,M) ≤ k
2 +λ for the case k = 2m, m ≥ 2

and λ ≥ k
2 + 1. Then colors from the set {k

2 + 1, . . . , λ} can not be used at all,
since these colors have no other colors at a distance of at least λ within the
set {1, . . . , k

2 +λ}. Therefore, only the other k colors can be used. So all these
k colors must occur in the clique and the vertices ui, with i = 1, . . . , k − 1,
must get the same color as the color of vk. We find a contradiction, since one
color can be used at most k

2 ≤ k − 2 times in the independent set.

Before completing the proof for the remaining cases we introduce the following
definition. Let G be a split graph on 2k vertices with k = ω(G) = α(G). The
matching backbone M contains all edges between the largest clique C and the
largest independent set I. Let every vertex in I have exactly one nonneighbor
in C and let the matching edges together with the nonneighbor relations (see
these nonneighbor relations as some imaginary edges) form one cycle of length
2k. By Ck,k we mean the representation of this split graph only by its vertices,
its matching edges and the nonneighbor relations between C and I.

For the remaining cases we consider split graphs G with matching backbones
M that are defined by the following characteristics.

1. ω(G) = α(G),

2. |nn(v)| = 1, ∀v ∈ I,
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3. The representation by their vertices, matching edges and nonneighbor
relations between C and I consists of exactly dk

3e copies of C3,3 or C2,2.
More specifically, there are x copies of C3,3 for k = 3x, there are x − 1
copies of C3,3 and two copies of C2,2 for k = 3x + 1, and there are x
copies of C3,3 and one copy of C2,2 for k = 3x + 2.

Suppose to the contrary that bbcλ(G,M) ≤ k +1 for the case k = 2m, m ≥ 6
and k+6

3 ≤ λ ≤ k
2 , or the case k = 2m + 1, m ≥ 4 and k+6

3 ≤ λ ≤ k+1
2 . Then

the three following observations can be made.

Observation 4.5.5. There is exactly one color that is not used in C, which
we call the independent color in this case. Without loss of generality, we
may assume that the independent color is in the set {λ + 1, . . . , k + 1}. The
independent color may be used p times in I, where p ≤ k + 1− λ. All vertices
in I that are not colored with this independent color must get the same color
as their unique nonneighbor in C, hence all these other colors can only occur
once in I.

Observation 4.5.6. Assume that the independent color is in the set {λ +
1, . . . , k +1} and that this color is used p times in I. Then we can choose only
k + 1 − λ − p colors from the set of other colors in {λ + 1, . . . , k + 1} to use
them in I.

Indeed, if the independent color is used k + 1 − λ times, then all the possible
colors for matching neighbors in C of the vertices in I with the other colors
from {λ+1, . . . , k+1} are already in use by matching neighbors of the vertices
that are colored with the independent color.

Observation 4.5.7. Assume that the independent color is in the set {λ +
1, . . . , k + 1}. Then the colors from {1, . . . , λ} can be used at most once in I.
Even stronger, from the set {1, . . . , λ} we can choose only dk

3e colors that can
be used in I.

Indeed, if we choose more, then there would be at least two colors from
{1, . . . , λ} in one C2,2 or C3,3. This means that there would be a matching
edge violating the minimally required distance λ between the two colors.

By these three observations, it can be derived that we can use the independent
color at most p times in I, we can use the other colors from {λ + 1, . . . , k + 1}
for at most k + 1 − λ − p vertices of I, and we can use colors from {1, . . . , λ}
for at most dk

3e vertices of I. Since dk
3e < λ − 1, we can only color at most

k + 1 − λ + dk
3e < k vertices of I. We find a contradiction.
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Finally, suppose to the contrary that bbcλ(G,M) ≤ k+1
2 + λ for the case

k = 2m + 1, m ≥ 4 and λ ≥ k+1
2 + 1. It is clear that colors from the set

{k+1
2 + 1, . . . , λ} can not be used at all. So, we can only use the k + 1 colors

from the two sets {1, . . . , k+1
2 } and {λ + 1, . . . , k+1

2 + λ}. Hence, we have
one independent color. Without loss of generality, we may assume that this
independent color is in {λ+1, . . . , k+1

2 +λ}. By Observation 4.5.5, we can use

the independent color at most p times in I, where p ≤ k+1
2 . By Observation

4.5.6, we can use the other colors from {λ + 1, . . . , k+1
2 + λ} for at most the

k+1
2 − p vertices of I. Since k+1

2 < λ, by Observation 4.5.7, we can use colors

from {1, . . . , k+1
2 } for at most dk

3e vertices of I. So we can only color at most
k+1
2 + dk

3e vertices of I. However, since in this case k ≥ 9, it holds that
k+1
2 + dk

3e < k. We find a contradiction.

4.5.3 Tree backbones of split graphs

In this subsection we present sharp upper bounds for the λ-backbone coloring
numbers of split graphs with tree backbones. The following theorem is a
generalization of Theorem 1.4.4(a).

Theorem 4.5.8. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) = k.
For every tree backbone T = (V,ET ) of G,

bbcλ(G,T ) ≤







1 if k = 1
1 + λ if k = 2
k + λ if k ≥ 3.

The bounds are tight.

Proof. We divide the proof into two parts as follows.

Part 1 Proof of the bounds.
Let G = (V,E) be a split graph with a spanning tree T = (V,ET ). Let C and
I be a partition of V such that C with |C| = k is a clique of maximum size,
and such that I is an independent set. As before, χ(G) = ω(G) = k. The case
k = 1 is trivial. If k = 2 then G is bipartite, and we use colors 1 and λ + 1.
For k ≥ 3, we consider the restriction of the tree T to the vertices in C, and
we distinguish two cases.

In the first case, the restriction of T to C forms a star K1,k−1. Let v1, . . . , vk−1

denote the k − 1 leaves of this star, and let vk denote its center. For i =
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1, . . . , k− 1 we color vi with color i, and we color vk with color k +λ− 1. This
yields a λ-backbone coloring for the vertices in C. All vertices u ∈ I are leaves
in the tree T . Any vertex u ∈ I with uvk /∈ ET can be safely colored with
color k +λ. It remains to consider vertices u ∈ I with uvk ∈ ET . In the graph
G, such a vertex u is nonadjacent to at least one of the vertices v1, . . . , vk−1,
say to vertex vj (otherwise, the clique C could be augmented by vertex u and
would not be of maximum size as we assumed). In this case we may color u
with color j.

In the second case, the restriction of T to C does not form a star. In this
case the restriction of T to C has a proper 2-coloring C = C1 ∪ C2 with
|C1| = a ≥ |C2| = b ≥ 2. Then there exist a vertex x ∈ C1 and a vertex
y ∈ C2 for which xy /∈ ET . Let v1, . . . , va = x be an enumeration of the
vertices in C1, and let y = va+1, . . . , va+b be an enumeration of the vertices in
C2. For i = 1, . . . , a we color vertex vi with color i + 1. For i = 1, . . . , b we
color vertex va+i with color a + λ + i − 1. This yields a λ-backbone coloring
of C with colors in {2, . . . , k + λ − 1}. We color each vertex u ∈ I with color

{

k + λ if uv ∈ ET and v ∈ C1

1 if uv ∈ ET and v ∈ C2.

This yields a λ-backbone (k+λ)-coloring of (G,T ), since the colors of a vertex
vi with i ∈ {1, . . . , a} and of any vertex u ∈ I such that uvi ∈ ET have distance
at least k + λ − (i + 1) ≥ k + λ − (k − 2 + 1) > λ, and since the colors of a
vertex vi with i ∈ {a + 1, . . . , b} and of any vertex u ∈ I such that uvi ∈ ET

have distance at least a + λ + i − 1 − 1 ≥ k/2 + λ − 1 ≥ λ.

Part 2 Proof of the tightness of the bounds.
The cases k = 1 and k = 2 are trivial. For k ≥ 3, we consider a split graph with
a clique of k vertices v1, . . . , vk and with an independent set of (k−2)(k−1)/2
vertices ui,j with 1 ≤ i < j ≤ k − 1. Every vertex ui,j is adjacent to all
vertices vs with s 6= i. The tree backbone T contains the k−1 edges vkvs with
1 ≤ s ≤ k − 1. The vertices ui,j form the leaves of T ; in the tree, vertex ui,j

is adjacent only to vj . Clearly, χ(G) = k.

Suppose to the contrary that bbcλ(G,T ) ≤ k + λ − 1, and consider such a
backbone coloring. The vertices v1, . . . , vk in the clique must be colored with
k pairwise distinct colors. Since they form a star, either vertex vk has color 1,
and colors 2, . . . , λ are not used on the clique, or vertex vk has color k +λ− 1,
and colors k, . . . , k+λ−2 are not used on the clique. Both cases are symmetric,
and we assume without loss of generality that vk has color k + λ− 1 and that
colors k, . . . , k + λ − 2 are not used on the clique. Let vi be the vertex that
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has color k − 2, and let vj be the vertex that has color k − 1. The vertex
ui,j is adjacent to all clique vertices except vi; hence, it could only be colored
with color k − 2 or with a color in {k, . . . , k + λ − 2}. But these λ colors are
forbidden for ui,j, since in the tree backbone it is adjacent to vertex vj with
color k − 1. Since there is no feasible color for ui,j, we arrive at the desired
contradiction.

4.6 The computational complexity of computing the

λ-backbone coloring number

We consider the computational complexity of computing the λ-backbone col-
oring number: “Given a graph G, a spanning subgraph H, and an integer `,
is bbcλ(G,H) ≤ `?” Of course, this general problem is NP-complete. In this
section we restrict ourselves to the graph G with a star backbone or a tree
backbone. In Subsection 4.6.1 we show that for this problem the complexity
jump occurs between ` = λ + 1 (easy for all star backbones S) and ` = λ + 2
(difficult even for matching backbones M). In Subsection 4.6.2 we show that
for this problem the complexity jump occurs between ` = λ + 2 (easy for all
tree backbones T ) and ` = λ + 3 (difficult even for path backbones P ).

4.6.1 Complexity results for star or matching backbones

Theorem 4.6.1. Let λ ≥ 2.

(a) The following problem is polynomially solvable for any ` ≤ λ + 1: Given
a graph G and a star backbone S, decide whether bbcλ(G,S) ≤ `.

(b) The following problem is NP-complete for all ` ≥ λ + 2: Given a graph
G and a matching backbone M , decide whether bbcλ(G,M) ≤ `.

Proof. We start with the positive result in statement (a). So let G = (V,E) be
a graph with a star backbone S = (V,ES). For ` ≤ λ the statement is trivial.
Now let ` = λ+1. We first note that in any λ-backbone coloring with color set
{1, 2, . . . , λ + 1}, colors 2, 3, . . . , λ can not be used at all, since each vertex is
incident with an edge of ES . Since the vertices with color 1 (color λ+ 1) form
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an independent set in G, it is clear that such a λ-backbone coloring induces
a bipartition of G. On the other hand, if G is bipartite, then assigning color
1 and color λ + 1 to the vertices on both sides of the bipartition yields a λ-
backbone coloring of any backbone of G. This shows that bbcλ(G,S) = λ+ 1
if and only if G is bipartite.

Now let us prove the negative result in statement (b). The reduction is done
from the NP-complete classical problem of GRAPH k-COLORABILITY (see
Garey & Johnson [19] problem [GT 4] for more information): Given a graph
H = (VH , EH), does there exist a k-coloring of H? This problem is known
to be NP-complete for any fixed integer k ≥ 3. We distinguish the following
cases.

Case 1 λ ≥ 3 and ` = λ + t for t = 2, . . . , λ − 1.
Let H = (VH , EH) be an instance of 2t colorability, and let v1, v2, . . . , vn denote
the vertices in VH . We create n new vertices u1, u2, . . . , un and introduce the
new edges viui (i = 1, 2, . . . , n). The graph that results from this is denoted
by G. The new edges form a matching backbone M of G. We claim that
χ(H) ≤ 2t if and only if bbcλ(G,M) ≤ `.

Assume that bbcλ(G,M) ≤ l and consider a λ-backbone `-coloring b of
(G,M). Since all vertices in G are incident with a matching edge, colors
t + 1, t + 2, . . . , λ can not be used at all. Then define a 2t-coloring c of H by:

• if b(v) = j for j = 1, 2, . . . , t: c(v) = j;

• if b(v) = λ + j for j = 1, 2, . . . , t: c(v) = t + j.

Next, assume that χ(H) ≤ 2t, and consider a 2t-coloring f : VH → {1, , . . . , 2t}.
We define a λ-backbone `-coloring g : VG → {1, . . . , `} of (G,M) by:

• if v ∈ VH and f(v) = j for j = 1, 2, . . . , t: g(v) = j;

• if v ∈ VH and f(v) = t + j for j = 1, 2, . . . , t: g(v) = λ + j;

• if g(vi) ≤ t: g(ui) = `;

• If g(vi) ≥ λ + 1: g(ui) = 1.

Case 2 λ ≥ 2 and ` ≥ 2λ.
Let H = (VH , EH) be an instance of ` colorability, and let v1, v2, . . . , vn denote
the vertices in VH . We create n new vertices u1, u2, . . . , un and introduce new
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edges viui (i = 1, 2, . . . , n). The graph that results from this is denoted by G.
The new edges form a matching backbone M of G. We complete the proof by
showing that χ(H) ≤ ` if and only if bbcλ(G,M) ≤ `.

Indeed, assume that bbcλ(G,M) ≤ ` and consider such a λ-backbone `-
coloring. Then the restriction to the vertices in VH yields an `-coloring of H.
Next assume that χ(H) ≤ `, and consider an `-coloring f : VH → {1, , . . . , `}.
We extend f to a λ-backbone `-coloring of (G,M): If f(vi) ≤ λ, then vertex ui

is colored with color `, and otherwise it is colored with color 1. This completes
the proof.

4.6.2 Complexity results for tree or path backbones

Theorem 4.6.2. Let λ ≥ 2.

(a) The following problem is polynomially solvable for any ` ≤ λ + 2: Given
a graph G and a spanning tree T , decide whether bbcλ(G,T ) ≤ `.

(b) The following problem is NP-complete for all ` ≥ λ + 3: Given a graph
G and a Hamiltonian path P , decide whether bbcλ(G,P ) ≤ `.

Proof. We start with the positive result in statement (a). Let G = (V,E)
be a graph with a spanning tree T = (V,ET ). The cases where ` ≤ λ are
trivial. Now let ` = λ + 1 and V = V0 ∪V1 be the bipartition of the vertex set
induced by T . Then in any λ-backbone coloring with color set {1, . . . , λ + 1},
colors 2, . . . , λ can not be used at all. Consider some fixed vertex v ∈ V0.
Without loss of generality assume that the color of v is 1. Then all vertices in
V0 must be colored with 1, and all vertices in V1 must be colored with λ + 1.
Hence, bbcλ(G,T ) = λ + 1 if and only if G is bipartite.

Next, consider the case of a λ-backbone coloring with color set {1, . . . , λ + 2}.
Then colors 3, . . . , λ can not be used at all. Consider some fixed vertex v ∈ V0.
Without loss of generality assume that the color of v is in {1, 2}. Then all
vertices in V0 must be colored with colors in {1, 2}, and all vertices in V1 must
be colored with colors in {λ+1, λ+2}. Hence, bbcλ(G,T ) ≤ λ+2 if and only
if the two subgraphs of G that are induced by V0 and by V1 are both bipartite
with the additional condition that none of the edges of ET has end vertices
with color 2 in V0 and color λ + 1 in V1. Checking these conditions can be
modeled as a 2-SAT problem, as follows. We introduce two Boolean variables
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xv and yv for each vertex v ∈ V (G), where we let the two literals xv and xv

correspond to assigning color 1 or color 2 to v, respectively, and yv and yv to
assigning color λ + 1 or color λ + 2 to v, respectively. Now G[V0] is bipartite
if and only if there is a satisfying truth assignment for (xu ∨ xv) ∧ (xu ∨ xv)
for each edge uv ∈ E(G[V0]). A similar statement holds for G[V1]. Finally, an
edge uv ∈ ET with u ∈ V0 is properly colored according to a λ-backbone λ+2-
coloring if and only if there is a satisfying truth assignment for xu ∨ yv. Since
2-SAT is polynomially solvable (see Garey & Johnson [19]), this completes the
proof of the statement in (a).

Now let us prove the negative result in statement (b) of Theorem 4.6.2.
The reduction is done from the NP-complete classical problem of GRAPH
k-COLORABILITY. We distinguish the following cases.

Case 1 ` = λ + t for t = 3, . . . , λ.
Let H = (VH , EH) be an instance of t colorability, and let v1, v2, . . . , vn be an
enumeration of the vertices in VH . We create n − 1 new vertices a1, a2, . . . ,
an−1. For every i = 1, . . . , n − 1 we introduce the new edges viai and aivi+1.
The graph that results from adding these n−1 new vertices and these 2(n−1)
new edges to H is denoted by G. The vertices v1, a1, v2, a2, v3 . . . , an−1, vn

form a Hamiltonian path P = (VP , EP ) of G. We complete the proof by
showing that χ(H) ≤ t if and only if bbcλ(G,P ) ≤ `.

Assume that bbcλ(G,P ) ≤ ` and consider a λ-backbone `-coloring b of (G,P ).
Since t ≤ λ, in any λ-backbone coloring only colors in {1, . . . , t}∪{λ+1, . . . , λ+
t} can be used. Note that V = VH ∪ {a1, . . . , an−1} is the bipartition of the
vertex set induced by P . Consider some fixed vertex v ∈ VH . Without loss of
generality assume that the color of v is in {1, . . . , t}. Then all vertices in VH

must be colored with colors in {1, . . . , t}. Hence χ(H) ≤ t.

Next, assume that χ(H) ≤ t, and consider a t-coloring f : VH → {1, , . . . , t}.
We extend f to a λ-backbone `-coloring of (G,P ): Every vertex ai receives
color λ + t.

Case 2 ` ≥ 2λ + 1.
Let H = (VH , EH) be an instance of ` colorability, and let v1, v2, . . . , vn be an
enumeration of the vertices in VH . We create 3(n − 1) new vertices ai, bi, ci

with 1 ≤ i ≤ n − 1. For every i = 1, . . . , n − 1 we introduce the new edges
viai, aibi, bici, and civi+1. The graph that results from adding these 3(n − 1)
new vertices and these 4(n− 1) new edges to H is denoted by G. The vertices
v1, a1, b1, c1, v2, a2, b2, . . . , cn−1, vn form a Hamiltonian path P of G. We claim
that χ(H) ≤ ` if and only if bbcλ(G,P ) ≤ `.
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Indeed, assume that bbcλ(G,P ) ≤ ` and consider such a λ-backbone `-
coloring. Then the restriction to the vertices in VH yields a proper `-coloring
of H. Next assume that χ(H) ≤ `, and consider a `-coloring f : VH →
{1, , . . . , `}. We extend f to a λ-backbone `-coloring of (G,P ):

• Every vertex bi receives color λ + 1.

• If f(vi) ≤ λ + 1, then ai is colored `, and otherwise it is colored 1.

• If f(vi+1) ≤ λ + 1, then ci is colored `, and otherwise it is colored 1.

This completes the proof of Theorem 4.6.2.



Summary

In this thesis we consider the following three topics in graph theory: spanning
2-connected subgraphs of grid graphs, Ramsey numbers for paths versus other
graphs, and some variations of vertex colorings.

In Chapter 1 we present some notations and give an overview of the main
results obtained, together with a survey of related known results.

In Chapter 2 we define some classes of grid graphs that we call truncated
rectangular grid graphs and alphabet graphs. We solve the problem of de-
termining a spanning 2-connected subgraph with as few edges as possible for
these graphs.

In Chapter 3 we determine the Ramsey numbers for paths versus wheels
R(Pn,Wm), the Ramsey numbers for paths versus kipases R(Pn, K̂m) and the
Ramsey numbers for paths versus fans R(Pn, Fm) for some values of m and n.
We also give lower bounds and upper bounds for R(Pn,Wm), R(Pn, K̂m) and
R(Pn, Fm) for the other values of m and n.

In Chapter 4 we study combinatorial and algorithmic aspects of λ-backbone
colorings. We determine a relation between the chromatic numbers and the
λ-backbone coloring numbers of graphs with star backbones or matching back-
bones. We also consider the special cases where the graph is a planar graph
and the backbone is a matching, and where the graph is a split graph and
the backbone is a collection of pairwise disjoint stars or a perfect matching or
a tree. Finally, we study the computational complexity of λ-backbone color-
ing for a graph with a star backbone, with a matching backbone, with a tree
backbone or with a path backbone.

103





Samenvatting

In dit proefschrift beschouwen wij de volgende drie onderwerpen uit de grafen-
theorie: opspannende 2-samenhangende deelgrafen van roostergrafen, Ramsey-
getallen voor paden versus andere grafen, en enige varianten van puntkleurin-
gen.

In Hoofdstuk 1 geven wij enige notaties alsmede een overzicht van de belang-
rijkste behaalde resultaten, samen met een overzicht van verwante bekende
resultaten.

In Hoofdstuk 2 definiëren wij enige klassen van roostergrafen die wij afgeknotte
rechthoekige roostergrafen en alfabetgrafen noemen. Wij lossen het probleem
op een opspannende 2-samenhangende deelgraaf met zo weinig mogelijk lijnen
te bepalen voor deze grafen.

In Hoofdstuk 3 bepalen wij de Ramsey-getallen voor paden versus wielen
R(Pn,Wm), de Ramsey-getallen voor paden versus kipassen R(Pn, K̂m) en
de Ramsey-getallen voor paden versus waaiers R(Pn, Fm) voor enige waarden
van m en n. Wij geven ook ondergrenzen en bovengrenzen voor R(Pn,Wm),
R(Pn, K̂m) en R(Pn, Fm) voor de overige waarden van m en n.

In Hoofdstuk 4 bestuderen wij combinatorische en algorithmische aspecten van
λ-skeletkleuringen. Wij bepalen een verband tussen de chromatische getallen
en de λ-skeletkleuringsgetallen van grafen met sterskeletten of matchingske-
letten. Wij beschouwen eveneens de speciale gevallen, waarin de graaf planair
is en het skelet een matching, en waarin de graaf een split-graaf en het skelet
een kollektie van paarsgewijs disjunkte sterren is of een perfekte matching,
dan wel een boom. Tenslotte bestuderen wij de berekeningskomplexiteit van
λ-skeletkleuring voor een graaf met als skelet een ster, een matching, een boom
of een pad.
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